
www.spoonsized.com

http://www.spoonsized.com
http://www.spoonsized.com

CSharpatron User Manual - v1.2

Contents
..Overview! 3

Why convert to C#?! 3
...Usage ! 4

Conversion Process! 4
Configuration! 6
Conversion Options! 6
Layout Options ! 6
Extras ! 7
About ! 7

...Interface ! 10
Context Menu! 10
Workspace Commands! 10

...Under the Hood! 11
Working Folders and Special Files ! 11
How Does CSharpatron Understand Variable Types? ! 11
Conversion Output! 11
How a File Goes Live! 12
How File Shadowing Works! 12

...Conversions! 13
File structure adjustments! 13
'Using' statements and type-names ! 13
Pragmas! 13
Attributes! 13
Simple syntactic changes! 13
Serializable attribute! 14
Field and type visibility! 14
Default assignment to variables! 14
Reserved variable names! 14
Variable types! 14
Implicit ‘new’ fix-ups! 14
Array types ! 14
Type casts ! 15
Numeric literals! 15
Character literals! 15
Access to static class members ! 15
Implicit boolean comparisons! 15
Type comparison! 15
Function declaration! 16
Calling functions with ‘ref’ and ‘out’ parameters ! 16

‘Function’ type and C# delegates ! 16
Anonymous methods ! 16
Extension methods! 16
Properties ! 16
‘Finalize’ functions! 17
Multi variable assignment! 17
Modification of ‘foreach’ loop iteration vars ! 17
Assignment to value type return values ! 17
Local variable scoping differences ! 17
Type inference when not using #pragma strict! 17
Coroutines & Coroutine usage! 17
Unityscript ‘in’ operator! 18
Switch statements ! 18
‘while (1)’ becomes ‘while (true)’! 18
parseInt, parseFloat! 18
Add component / component look-up methods ! 18
UnityEngine.Object.Instantiate! 18
@CustomEditor! 18

...Limitations! 19
Reflection Limits ! 19
Auto Fix-up Limits ! 19
#pragma strict! 19
UnityScript 'Array' Class ! 19
Script File Location! 19

...Trouble-shooting & Tips! 20
..Support! 22

..Appendix A - Example Conversions! 23
...Appendix B - Common Conversion Errors! 33

‘Fix .JS’ Error Types! 33
‘Fix .CS’ Error Types! 34
General Error Types ! 34
Warnings ! 35

..Appendix C - Case Study! 37
The Moment of Truth! 39
Build Time Improvement ! 39
Problems Revealed! 40
Manual Fixes Required! 40
Conclusions! 41

...Appendix D - Extras! 41
Reflection Tools ! 41

..Change Log! 42

 2

CSharpatron User Manual - v1.2

Overview
CSharpatron is a Unity Editor Extension that converts UnityScript (.js) files to C#. It uses .Net type reflection
and fully language aware parsing to evaluate and convert script in an extremely comprehensive manner. It
is able to not only make the basic language formatting adjustments you might expect, but can also
handle a huge number of more subtle fixes such as -

• Inference of all variable types.
• Addition of required type-casts.
• Adding default assignments for local variables.
• Re-formatting literals.
• Making (only) necessary namespace inclusions.
• Making logical comparisons explicit for non boolean types.
• Automatically accounting for different local variable scoping rules between UnityScript and C#.

In the majority of cases a converted file will compile, error-free in C# without need for a single manual edit.

The converter takes an approach that aims to fix-up everything it can, whilst pointing you directly at the
few things that it cannot, via clear, thorough error logging. The (few) fixes you may need to make are
broken down into ‘pre conversion’ fixes to be made in the original .js file and ‘post conversion’ fixes to be
made in the final .cs file.

CSharpatron is respectful of your file formatting preferences offering automatic sensing or manual
selection to define things like brace placement and spacing. Additional options allow you to express
various conversion preferences.

To compliment its unique conversion capabilities, CSharpatron also includes a powerful and elegant
Workspace View. This window is designed to help you in every step of converting your project to C#. It
captures all converter and compiler error information, shows external dependency information for a file,
and provides various tools to automate work stages. At any time a single button click can toggle between
your original .js and converted .cs versions of a file.

Making many new C# scripts active in one go can be a significant challenge due to the many
interdependencies and circular dependencies that often exist between files. To solve this problem,
CSharpatron implements ‘file shadowing’. This is a mechanism that allows you to expose converted files to
the C# compiler one or two at a time and in any order (while your .js files remain active). You can use this
to work through potential compile errors and then make a file fully active once externally referenced types
are also compiling happily in their C# form.

CSharpatron’s conversion process does not break any mapped game-object or components.

Whether you need to convert just a few files or an entire project - CSharpatron makes it possible to
achieve in minutes what would have been days of tedious, error-prone work by hand.

To see examples of CSharpatron’s output, see Appendix A.

You can read about my own experience converting a large (107,000 line) project to C# in the Case Study
appendix of this manual.

Why convert to C#?
Without wanting to enter into the holy wars of a 'which language is best' debate, I'll set out my personal
motivations for moving my Unity codebase from Unityscript to C# - basically the reasons I created
CSharpatron…

• I wanted to be able to utilize the more in depth language features of C#, e.g. tighter type control
(especially control over use of references), extension methods, namespaces, nullable types, const
variables, easier #ifdef capabilities, to name just a few.

• I grew to dislike the many ways that Unityscript almost encourages sloppy programming practices (and
thus bugs). As you can see in my Case Study, there are a horrifying number of ways in which Unityscript
allows you to shoot yourself in the foot!

• I grew irritated with the fact that Unityscript is an ‘unofficial’, hard to pin-down language - often
confusingly called Javascript but actually unlike it in so many ways. If you encounter problems or
confusion with the language there is no official language spec to lookup, no chance of assistance from
beyond the Unity community.

• Most people offering Unity contract work are looking for C# programmers. It pained me to feel like I was
creating an ever larger pool of potentially reusable project code that I couldn't easily access from C#.

• I found myself utilizing external libraries that were invariably created in C#. Any work to extend these
classes kept throwing me against the world of ugliness and hurt that is Unity's language divide (folder
based compilation ordering, etc); working with a mix of languages is clumsy and error prone.

• And most of all: the lengthy compile time for my .js project was starting to drive me insane. ….In C# form
my project now compiles in about 30% of the time it did in Unityscript!

If you're in a similar position and are ready to trade the good-natured but dangerously permissive
Unityscript compiler for the harsh but ever watchful mistress that is the C# compiler, then read on!

 3

CSharpatron User Manual - v1.2

Usage
To use CSharpatron you should load up a project containing UnityScript files that you wish to convert to
C#. Because CSharpatron parses files much like a compiler, your starting point must be UnityScript files
that are in a fully compilable state, i.e. free from syntactic errors.

You will also need to ensure that your project’s active platform is the one for which you wish to
perform conversion, and that the project has been successfully compiled. The reason for these
stipulations is that CSharpatron will only convert script that it ‘sees’, i.e. code that isn’t within comments or
non-active #if blocks. To better understand the reasons behind this, see ‘How Does CSharpatron
Understand Variable Types?’. You may also wish to check out CSharpatron’s Limitations.

Before doing anything else, back up your source! ...Better yet, if you don’t do so already, now
would be a great time to start using source control!

CSharpatron does makes its own back-ups of your original .js files as it works, but nevertheless, I
wouldn’t trust someone else’s tool with the only copy of my source and neither should you!

Under Unity's Windows menu you should see 'CSharpatron (.js to C#)'. Select this in order to open up
CSharpatron’s Control Center panel. This is the place to look for configuration options and your starting
point for any file conversions. You'll probably want to dock this window and/or keep it clearly visible
during file conversion.

The next section will discuss the Conversion Process. Before attempting your first real file conversions you
may prefer to read about Configuration first.

You can watch a video tutorial demonstrating a basic project conversion here.

Conversion Process
The basic steps of the conversion process are:

• Convert files
• Review error log ⬌ fix conversion errors and re-convert
• Activate C# files ⬌ fix C# compile errors

In more detail, this is the process for using CSharpatron:

1. Select file(s).
• Highlight files or folders in your Project Window. You can use multi-select or click on one or more

folders to include their contents.
• If you intend to convert an entire project, it’s a good idea to select them all in one go.

2. Hit the 'Convert' button.

Once conversion completes, review errors using the Workspace View.
• Alternatively you can look at the conversion log: CSharpatronWork/Log.txt

At this point your files have all been converted to C#, but none of them are ‘live’ yet. Instead, in the same
location as each original .js file, you will find a .csTest file of the same name.

If you chose to convert only a subset of your files initially, you can add more at any time.

With a simple project you may see no conversion errors at all (e.g. Unity’s Penelope example project), in
which case you can jump straight to step 5.

If you do see errors, especially if these are of ‘Fix .JS’ types, then there’s no way those files will compile just
yet, so the next thing to do is to fix them...

 4

https://www.youtube.com/watch?v=PpcU2Di_ZZo
https://www.youtube.com/watch?v=PpcU2Di_ZZo

CSharpatron User Manual - v1.2

4. Go through all your workspace files and fix any ‘Fix .JS’ errors that may be flagged.
• Use the workspace view to see a list of warnings and errors. Click on a line number to jump to that

error (assuming you have a compliant External Script Editor configured).
• After making a fix you’ll need to wait for the file to be rebuilt by the Unityscript compiler.
• ReConvert each affected file.
• Repeat until there are no such errors.
• NOTE: you may still have a few regular errors but most likely these are all things that will fall away or

are better addressed in the next phase.

Now you just need to get your freshly prepared C# files compiling...

5. Start by finding files that are error free and have zero X-Refs (external references). Individually, or
via group-selection (holding shift), make these files ‘live’.

• Click on the Workspace View’s ‘sort by X-Refs’ option to order files by X-Refs.
• Each time you take a file live, it will be seen by the C# compiler and will auto-compile. CSharpatron

will capture any error output.
• To understand what happens when a file is made live, see ‘How A File Goes Live’.
• For files that CSharpatron thinks were converted without error, those files will usually compile

without error too; any issues are likely to be very minor. Fix any problems directly in the .cs files.
• You can actually edit either the .cs or .csTest versions of a file interchangeably according to whether

the file is ‘live’ or nor. Remember: use the Workspace error list or context menu to jump to a file.
• Building one (or a few) files at a time makes working through any errors simpler.
• Each time you activate (or deactivate) files you will need to wait for the compiler to finish;

CSharpatron deliberately blocks further file-state changes during compilation to reduce the risk of
you encountering confusing errors or leaving your project in a broken state.

6. With your X-Ref free files now compiling under C# you will likely see more files whose own X-Refs
are now ‘fulfilled’. You can take these files live too. Work through as many zero X-Ref files as you
can.

• Click again on ‘sort by X-Refs’ re-sort following changes in file activity.

Even with a simple project, you may reach a point where there are no more ‘low hanging fruit’ and your
files start to have unfulfilled X-Refs. Ordinarily you’d now have to start hacking files around to try and
circumvent dependency problems. However, CSharpatron’s ‘shadowing’ mode will - in most cases - totally
bypass such headaches and allow you to test compilation of a file right away. For an explanation of this
feature see ‘How File Shadowing Works’.

Before file shadowing is possible a ‘Stubs’ file must be built.

7. Use the ‘Build Stubs File’ command to generate a ‘header’ file containing all of your classes.
8. Make all files ‘live’ in ‘shadow’ mode.

• As before, enabling a few files at a time is a sensible approach.
• You should see few errors. Any that crop up should be fixed in their .cs files.
• You may encounter files that have dependency issues even in ‘shadowed’ mode (e.g. files reliant on

delegate types declared in another file - stubs for delegates cheat by just treating them as ‘objects’
but this doesn’t cut it when client files compile against them!). In these cases there are two options:

• Figure out which files are needed to provide accurate type information and activate those first.
• Use dependency hacks to comment out problematic elements in your file. See ‘Dependency

Hacks Tag’
9. Review X-Refs for ‘shadowed’ files.

• You can use the File Dependencies mode to see all files that a given file is dependent upon - most
likely a lot. Until all of these files are also ‘live’ a file needs to remain in the shadowed namespace.

10. Use the ‘DeShadow‘ command to scan for files that are ready to be taken out of the shadow
namespace and be made fully active.

• Any files that are ready will be automatically made active.

Once all files have been made ‘live’ and ‘de-shadowed’, you’re almost done. Just two steps remain...

11. If you used Dependency Hacks to make it easier to activate files, now is the time to remove
them.
• Look for cyan colored ‘live’ icons in your Workspace View - these are files with one or more hacks.
• After removing a hack and letting a file compile, its ‘live’ icon should turn green.

12. With all files compiling successfully you should now see a completion message in the Workspace
View’s status area. A new command: ‘Finalize’ should now be available. ...Click it!
• The Finalize button will appear when your C# conversion percentage is 100%.

And that should be it - your files are all converted and have been moved back to the original source file
locations. Your project should now be executable in its C# form!

Files cannot be added to a ‘Finalized’ workspace. If you wish to do more conversion work you can use
‘DestroyWorkspace’ to delete the finalized workspace and initiate new conversions as for Step 1.

So did everything work?

See my own Case Study to read about how I fared with my own project. TL;DR: the
conversion process highlighted the need for a few ‘thing != null’ checks in a couple of
systems, but otherwise ...SUCCESS!

 5

CSharpatron User Manual - v1.2

Configuration
Before getting too far into the conversion process, you may wish to review the configuration options
available to you. The control center panel will initially look like this:

• Click on a yellow arrow to open up a list of related options.
• NOTE: the state of all options is automatically written to your EditorPrefs file.

Conversion Options
These are options relating to how CSharpatron will convert your source.

• Custom defines. Allows you to specify any custom defines that will control how CSharpatron parses
your scripts. Only script outside of any #if block or within a specified define can be converted.

• Platform defines. Allows you to choose the core platform defines that you wish to be active for
conversion. Because of the way CSharpatron looks up type information, you should only select platform
options that make sense for the platform of your currently active project. See ‘How Does CSharpatron
Understand Variable Types?’ for more information on this. Only script outside of any #if block or within a
specified define can be converted.

• Local var conversion. You can choose how you want CSharpatron to reformat local (function) vars.
Options are:

- Prefer inferred. Declarations should use an exact type as inferred during conversion. If a type
cannot be inferred CSharpatron may fallback to the ‘var’ keyword. This is the default option.

- Only Inferred. As above, except that if a type cannot be inferred (rare), then an error is logged;
the var keyword is never used.

- Use var keyword. Where possible the ‘var’ keyword is used; type is inferred where the ‘var’ type
would not be legal.

NOTE: all options apply to local variable only since in C# the ‘var’ keyword is only valid in function scope;
class vars must always be converted to an exact type.

• Infer unqualified decimal literals as ‘float’. This controls what CSharpatron will do when it encounters
a decimal constant without a float suffix, e.g. 1.0, 28.5, etc. Select this option and all such constants will
be assumed to be floats and given an ‘f’ suffix, e.g. 1.0f, 28.5f, etc. Leave this unchecked and such
constants will be converted as ‘doubles’ (i.e. no ‘f’ suffix).

• Convert all-caps variable declaration to ‘const’. A common practice in professional development is
for all constants defined in a program to be named using upper-case. Unityscript has no ‘const’ keyword,
but by ticking this option CSharpatron will automatically declare any suitably named C# variables (that
qualify) to be ‘const’.

• Filter libs list. Each time you convert files with CSharpatron it must generate a large database of type
information to supplement information already available via Reflection. This process can take a few
seconds. With this option ticked the time is reduced by ignoring all symbols contained within a list of
libraries that I don’t believe many developers - at least those making games - are likely to be using. By
default the option is ticked but you may want to un-tick it if your project is not a game or you encounter
conversion errors relating to ‘unknown types’.

• Write to ‘stubs’ file during conversion. ‘File shadowing’ (a feature to help you work through
dependency bottle-necks) relies on having type information available via an auto-generated ‘stubs’ file.
With this option ticked CSharpatron will automatically write to the ‘stubs’ files each time a file is
converted.
By default this option is off. This is because the stubs file must itself have no external dependencies; if
you are converting just a few files and/or expect to fix up dependencies by hand, the shadowing
concept can’t help you much, and you may just see errors from having only a partially complete ‘stubs’
file.
If you are converting an entire project my recommendation would be to leave this un-ticked until the
first conversion pass is complete. After that you may want to use the ‘Rebuild Stubs File’ command to
build the ‘stubs’ file, and then tick this option to have each subsequent re-convert update ‘stubs’ file
content as required.

Layout Options
These are options relating to how CSharpatron will format changes and additions to your source files.

• Source formatting. This option lets you select how CSharpatron will determine how to format any fix-
ups and modifications to your source during conversion. Options are:

• Infer from file. When this setting is active, CSharpatron will look at the formatting within each input
file and will generate source modifications in a consistent style. This is the default option and should
typically ‘do the right thing’.

• User defined. If you select this option then sub-options appear which allow you to directly choose
how you want script changes to be formatted:

• Prefer spaced out source. If ticked, you will see spaces between operators and vars, e.g.

 6

CSharpatron User Manual - v1.2

if (thisVar < 5) otherVar *= 2;
If not ticked you would see:

if (thisVar<5) otherVar*=2;
• Prefer line-saver brace style. If ticked you will see opening braces on the same line, e.g.

void MyFunc(void) {
 ...
}

As opposed to:

void MyFunc(void)
{
 ...
}

• Lines between functions. Some conversion fixes can cause functions and type definitions to be
moved within a file. This value expresses a preference for how many empty lines should exist
between adjacent functions or types.

• Tab size. How many spaces does a tab character represent? Default value is 4.

• Func-decl line-wrap. When reformatting function declarations, if they exceed this (single line) length
then parameters are split over multiple lines, e.g.

 void myFunc(int param1, float param2, string param3)
becomes...

 void myFunc(int param1,
 float param2,
 string param3)

Of course if you don’t like this syntax you can just set a very large number for the wrap value.

• Tabs as spaces. If ticked then any inserted tabs will actually be implemented as a block of spaces (of the
size given by ‘Tab size’). Default is off.

• Tab in mono class body. In many cases CSharpatron will need to build a class declaration around any
file-class methods and variables. This option specifies whether all content within the containing braces
of that declaration should be tabbed in or not. Default is on.

Extras
• Dependency hacks tag. Even with file ‘shadowing’ you may still encounter situations where getting a
file to compile is tricky without having other files already compiling under C# (e.g. when fixing up
delegate types). A solution may be to temporarily comment out problem lines in your .cs file.
CSharpatron can help you to track such ‘hacks’ provided you prefix them with a special tag, e.g.

// !CSDEP! callDelegate(param1, param2)
or
/* !CSDEP!
 callDelegate(param1, param2)
 …
*/

The default tag is the one shown here, but you can use this option to adjust it as you see fit. The
presence of one or more instances of this tag will cause the ‘live’ icon for a file to show cyan instead of
green.
CAUTION: if you use this feature, I strongly suggest you add the tag for every single commented out
block. Really. Fail to do this just once and its so easy to forget what was a dependency hack and what
was just a commented out line in the original file!

• Shadowing namespace. This allows you to set the name for the special namespace CSharpatron will
use when ‘shadowing’ a file.

• Show reflected types, Show members of type, Show members with name, Extension methods.
These are kind of a bonus feature in CSharpatron. …Using these fields you can query the .Net reflection
database within Unity to learn lots of interesting things about the (immense number of) libraries and
methods that are potentially available for you to use. You can also ‘see’ all elements of your own
application as part of the same database. See Appendix D for discussion on how to use these tools.

• Suppress log callbacks. Unity has a simple mechanism that allows an Editor Extension to capture log
file output. Unfortunately there is no arbitration of which clients might be using this capability: all you
can do is set it, and if another extension was already using it, then tough - that extension will now be
broken! CSharpatron makes extensive use of log capturing to collect C# compiler errors. If you’re actively
using CSharpatron then you really don’t want to be suppressing the log callback and missing out on that
error capture, however this option exists just in case you want to temporarily ensure that another Editor
Extension can function correctly.

About
Version and contact information.

 7

CSharpatron User Manual - v1.2 8

Workspace file-list

Sort alphabetically by file-name or path

Sort by error count (various)
- Click to sort files
- Double click to invert ordering

Sort by number of not-yet-live
external references

 Live status for a file

 Click to toggle file status

File error status

Tiny spoon-bot working
tirelessly behind the

scenes

Status line

Project commands

Not live

Live, no errors

Live, C# errors

‘Shadowed’

Live, with hacks

File commands.
Use multi-select to act on a file-group

File status line.
- Left click to select
- Shift-click to multi-select
- Right click for file-commands

Quick help information /
Status messages

 File status summary

- Conversion errors
- C# errors
- External type refs.

Left-click element to show list view

Workspace View

Sort by file ‘live’ status

Resize window as required

Selected file

CSharpatron User Manual - v1.2

E

 9

Errors & X-Refs
Error line

Left-click to jump to source file Error information Click to show/hide error list

Type Dependencies for selected file

File Dependencies for selected file

Click to show file
dependencies

Click to show type
dependencies

Type currently not
available in C#

Click to show/hide X-Refs

Type available in C#
but ‘shadowed’

Type fully active in C#

Error/warning status

Direct dependency

Inherited dependency

Circular dependency

Converter

C# Compile

Error source

CSharpatron User Manual - v1.2

Interface
Please see the pages ’Workspace View’ and ‘Errors & X-Refs’ for a visual overview of the Workspace View.
Text in red denotes interactive components of the interface.

The file list shows all files in your workspace. You can use various options in the upper ‘sort-bar’ to control
sorting of this list.

The lightning-bolt icon to the right of each line show the ‘live’ status for a file. You can click these icons to
toggle the state (i.e. switch whether the file’s .js or .cs file is currently active). Be aware that each time you
click a ‘live’ icon you will be initiating a compile (which will in turn disable further file operations until
complete to avoid potential error states).

You can select files in the file-list by left clicking them. Holding down shift will multi-select - you will see
buttons in the lower panel reflect your selection count (each of these represents a possible group action
that you can apply).

If you left click on the status fields of a file you can toggle display of extended information relating to that
field, e.g. CSharpatron conversion errors, compile errors (if available) or external references. With either
error list shown, you can click on a line number to jump to that error in your Unity associated text editor. If
the X-Refs list is visible, you can click the text at the top left of this panel to toggle between X-Ref types and
X-Ref files. The ‘files’ view will show direct, inherited (italic) and circular (yellow) dependencies.

By right clicking a file you can bring up a context menu showing file specific actions.

Context Menu
• View .js. Jump to the given file’s .js version. This isn’t available once a file is ‘live’ (deactivate it first).
• View .csTest. Jump to the C# converted form of this file. This isn’t available once a file is ‘live’ (the

‘View .cs’ command takes its place).
• View .cs. Jump to the C# version of this file. This is only available one a file is ‘live’.
• Force build state refresh. (For a ‘live’ file.) This forces a re-test of the compilation success/fail state for a
file. It can be useful in rare cases where successful compilation fails to update a previous error state.

• Re-Convert file from .JS. Re-convert the file from the .js original. This will overwrite the current .csTest
version of the file with a new one (be careful if you have made edits!). This option isn’t available if a C#
version of the file is active (deactivate it first).

• Remove from Workspace. This will remove the given file from the workspace, also deleting the .csTest
version of the file. Only available if a file isn’t ‘live’. NOTE: this action cannot be undone (at least not
without re-converting a file).

Workspace Commands
There are a number of commands generally available in the lower part of the Workspace View.

• Remove[X]. Remove selected files from the workspace - synonymous with using ‘Remove from
Workspace’ on each file.

• Re-Convert[X]. Re-convert selected files to build new .csTest representations and capture new
conversion log output for them. This is synonymous with selecting ‘Re-Convert’ on each file. NOTE: it pays
to convert multiple files at a time since initialization work is only performed once.

• Toggle ‘live’ [X]. This is synonymous with clicking the ‘live’ icons of each selected file. If a file is currently
not live it will go live and vice versa. It often pays to group multiple files for activation toggling since
build time is significantly reduced.

• View Documentation. This will open up this .pdf file in your system’s associated .pdf viewer.
• Destroy Workspace. This will de-activate any active files and remove every file from your workspace. Be

careful: any .csTest/.cs edits will be lost!
• Rebuild Error Log. Every time the converter runs, the log file is replaced with output reflecting solely the

last conversion file-set. However, conversion log entries for every file are retained in Workspace.txt; this
command will rebuild an error log with contributions from all files in your workspace.
NOTE: when you rebuild the error log the order will reflect the current sort order of the Workspace View file-list.

• View Error Log. Open the current error log in your Unity associated browser.
• Rebuild Stubs File. A ‘stubs’ file is critical for usage of CSharpatron’s file shadowing feature (see ‘How File

Shadowing Works’). This option will (re) build a ‘stubs’ file containing entries from every file in your
workspace that isn’t currently shadowed. You can run this command at any time to bring the stubs file up
to date.

• DeShadow Files. This will look at the current dependency states of every shadowed file. Any files whose
X-Refs are now fully fulfilled (i.e. which are now compiled to C# in either full or shadowed form) will be
de-shadowed to become fully active C# files. You can see for yourself if a file is ready to be de-shadowed
by using the X-Ref file-view mode. You will likely find that most files have a huge number of X-Refs so de-
shadowing them won’t be possible until very late in the conversion process.

• Finalize. This command appears once all workspace files are ‘live’ (i.e. compiled in C#) and you have no
compile errors. The command effectively completes the conversion process by moving .cs files back from
the ‘Plugins’ folder to your original source file locations. The stubs file will be deleted. NOTE: ‘Finalize’ will
not delete either your workspace file or the original Unityscript backup files stored in ‘CSharpatronWork/
Backup’. It will be up to you to remove those files manually when you are ready to do so.

 10

CSharpatron User Manual - v1.2

Under the Hood

Working Folders and Special Files
During CSharpatron usage, the converter will create several sub-folders within your project’s Asset folder.

• CSharpatronWork. Two important files are written to this location:
• Log.txt. This is the log output for the last conversion operation. NOTE: you can rebuild a full version

of this file at any time using the Rebuild Log File command.
• Workspace.txt. This file records all files that you have converted (and effectively added to your

workspace). For each file it remembers conversion errors, compile errors and external references.
This file is critical to the ongoing conversion process so be sure not to delete it any time you’re still working
with a workspace!

• CSharpatronWork/Backup. This is where your original .js files are backed-up any time that you ‘go live’
with a converted file. The files are renamed with the extension .jsOrig so that they are no longer ‘seen’
by the Unityscript compiler. It is strongly recommended that you don’t edit or delete these files during
CSharpatron usage!

• Plugins/CSharpatronConverted. This is where ‘live’ .cs files are written by CSharpatron. The location of
this folder is critical: since it is within ‘Plugins’ this means that Unity will compile these files before
attempting compilation of the .js files that still reside within your project’s source folder (and so a
new .cs file can go live and its types are still visible to your .js files during their own compilation,
whereas if the .cs files were written to the same place as the .js originals, compilation order wouldn’t
permit the UnityScript compile to see those types and you’d get lots of ‘unknown type’ errors). For more
information about script compilation order, see here.

Another important file is written to the top level of Plugins/CSharpatronConverted:

• ConversionTemp.cs. This is the file typically referred to as the ‘stubs’ file. It can be generated after file
conversion by the ReBuild Stubs File command, and will be incrementally updated when the Build
stubs during conversion option is ticked.
The file contains stub versions of every class in your project that can be used to support ‘file shadowing’.
For more information on the role this file plays see here.
NOTE: if you see compile errors in ConversionTemp.cs then this suggests that (probably) you have built
a stubs file that doesn’t know about all the types in your project (most likely there are files you haven’t
converted?). ...Or there’s some bug in the generation of the stubs file (hopefully not!). In either case,
provided you have no currently shadowed files, you can simply delete ConversionTemp.cs without
consequence - remember it can be rebuilt at any time.

How Does CSharpatron Understand Variable Types?
CSharpatron utilizes a language feature called ‘Reflection’ that is built into .Net/Mono. This makes it
possible to look up precise type information for any loaded (i.e. successfully compiled) assembly. It is for
this reason that you need to always be working with valid, compiled script and why you should only
attempt to convert scripts for platforms that match your active Unity project platform.

As an example: if you are working on a iPhone project, you may tick UNITY_EDITOR and UNITY_IPHONE. If
you have any other options ticked and your script contains script within corresponding #if blocks then you
will most likely see many errors.

Conversion Output
As a file is converted there are several types of information that may be logged.

• Warnings. These are typically informing you of changes that CSharpatron has made in the output file.
You won't be specifically 'warned' for every little change that is made, but there are a number of specific
types where you may want to be aware of and/or review changes.

• Errors. These are problems encountered by CSharpatron which mean that a portion of a file couldn't be
converted (perhaps just a single statement, perhaps more if that first error had knock on effects). Regular
errors don't mean that a converted file wasn't written out, but do tell you that the written file is unlikely
to compile cleanly. There are two important sub-types of error that relate to manual fixes you will need to
make in a file:

• Fix .JS. These are items that will certainly block a file from compiling in C#. They are things that you
should fix in the .js version of the file before then re-converting it. Upon the next conversion attempt
you should see no recurrence of the original error and most likely other related errors will have gone
away too.
In practice there are only a few ‘Fix .JS’ error types that you are likely to see. You can read about them
in Appendix B.

• Fix .CS. These are things that need to be fixed in the output .csTest/.cs file. Because Unity will
automatically start compiling these files if activated, you will certainly see C# compiler errors related
to the same things; making fixes in the .csTest version of a file will often make most sense.
In practice all errors in this category actually relate to use of Unityscript’s ‘Function’ type and the need
to explicitly configure how you wish to replace those types in C# (i.e. which kind of delegate and what
its parameter and return types may be).
You may in fact choose to fix delegate related errors by placing Type Hints in your .js files. You can
see examples in Appendix A11.

• Fatal errors. These are issues that caused CSharpatron to completely abort conversion of a file (i.e. no
output could be written). They can essentially occur for two reasons:

a. You have some kind of formatting or compile error in your source file.

 11

https://docs.unity3d.com/Documentation/Manual/ScriptCompileOrderFolders.html
https://docs.unity3d.com/Documentation/Manual/ScriptCompileOrderFolders.html

CSharpatron User Manual - v1.2

b. There is a bug or omission in CSharpatron. <ahem>

If you look in the log file you’ll see extended error information and perhaps a stack-trace relating to a
Fatal Error. Below this the log should tell you the last line successfully converted and so enable you to
determine whether you’re dealing with type a) or b).

In general CSharpatron is designed to be very robust in its handling of errors - even fatal errors will only
disrupt a single file conversion if you are converting a larger group of files.

How a File Goes Live
When you click the lightning -bolt icon to make a file ‘live’ (or if is part of a multi-file Toggle ‘Live’
command), CSharpatron does the following:

• (If the file is not being ‘shadowed’) The .js version of your file is moved to a location that mirrors the
original source file location but as a sub-folder of ‘CSharpatronWork/Backup’.

• The file is renamed to become <yourfile>.origJS. With this new extension, Unity will no longer try
to compile it.

• The .csTest version of the file is moved to a location that mirrors the original source file location but as a
sub-folder of ‘Plugins/CSharpatronConverted’.

• If the file is being shadowed, CSharpatron will enclose the entire file content within a custom
namespace.

• The file is renamed to become <yourFile>.cs. With this new extension, Unity will initiate compile of
the file.

• (If the file is not being ‘shadowed’.) The file <yourFile>.js.meta is copied to the folder ‘Plugins/
CSharpatronConverted’ and renamed <yourFile>.cs.meta. This is a critical step since it is how we’re
able to avoid any mapped object losing any script connections.

If you deactivate a file then these steps are reversed and you’re left with the .js file active and the .csTest
version sitting alongside it.

If you activate multiple files at once you’ll find that the order in which the compiler builds them appears to
be completely arbitrary, and while two or three may compile in parallel, all other files will be blocked until
any compile issues in those chosen files are resolved. In practice I find that taking just a few files live at a
time can avoid quite a bit of confusion (albeit this is a tradeoff against build-time).

Remember, if you do see relatively cryptic sounding C# errors it may be worth checking back over the
CSharpatron log for the file: perhaps you’ll see something you forgot to fix. ...Usually CSharpatron’s errors
will be more straightforward to understand, especially if C# is new to you.

How File Shadowing Works
To help you to work around dependency issues that can make activating your C# files a truly unpleasant
ordeal, CSharpatron implements ‘file shadowing’.

The principle is this: when you try to activate a C# file that has one or more externally referenced files that
isn’t already compiled in C#, CSharpatron will activate the file in ‘shadowed’ mode.

Behind the scenes what happens is that CSharpatron creates and manages a new C# namespace that
contains ‘shadowed’ versions of your project classes. Initially this namespace will contain ‘stub’ versions of
every single type declared in your (workspace) conversion files.

Before ‘shadowing’ can proceed, you first need CSharpatron to generate the .cs file that contains all of the
necessary type information. This is the file ‘Plugins/CSharpatronConverted/ConversionTemp.cs’, also
referred to as the ‘stubs’ file. To build this file you use the command Build Stubs File. Once you have a stubs
file it will need to be kept up to date should you re-convert any source files. This will be handled
automatically if you enable the Conversion Option Build ‘stubs’ file during conversion.
NOTE: a few liberties are taken when building the ‘stubs’ file, e.g. all fields are declared public, ‘Function’ and
‘Array’ type params (not valid in C#) become ‘object’. ...We just need to make a file that as simply as possible
captures the types and interfaces for your project so that other files can compile against it.

NOTE: You can use the command Build Stubs File to rebuild the stubs file at any time, so this should be
your first action should you encounter any build issue related to ConversionTemp.cs.

As files are activated in ‘shadow’ form, their .js version remains active (so your project remains compilable
and runnable), and custom versions of their .cs counterparts go live too, where each such file has been
automatically enclosed within the shadow namespace. For each ‘shadowed’ file, CSharpatron will remove
the stub file entries for that file since the .cs file now provides ‘real’ definitions for all elements.

In essence the shadowing mode allows you to test the compilation state for all converted files and to locate
and fix errors long before dependency issues would have otherwise allowed for useful compilation.

In testing, I attempted to convert my project using a version of CSharpatron where I hadn’t yet
implemented ‘shadowing’ mode. Ugh! What a world of hurt those file dependencies are... ‘Shadow’ mode
FTW!

 12

CSharpatron User Manual - v1.2

Conversions
Although there are many shared elements between Unityscript and C# - they both sit on top of the
same .Net framework, both access most of the same libraries, share similar syntax - there are a many small
syntactic differences and a few major conceptual differences that make manual file conversion a tedious
and error prone chore.

CSharpatron attempts to automate as many aspects of file conversion as possible whilst remaining 100%
consistent with original functionality.

I will outline the various conversions and fix-ups that take place and a few things that CSharpatron doesn’t
handle.

File structure adjustments
There are a few approaches to structuring classes within Unityscript files.

a) Don’t declare any class, i.e. a file implicitly represents a MonoBehaviour derived class of the same name
as the file. The file may contain other explicitly declared classes. ...All functions and vars defined in the
file become part of the ‘File Class’.

b) Explicitly declare a class within the file that has the same name as the file and may derive from
MonoBehaviour, a different class or be a base class with no inheritance. The file may contain other
explicitly declared classes.

c) Declare one or more classes where none of those classes share the same name as the file.

In C# there is no inferred automatic class generation (type A) and so CSharpatron must manually create an
equivalent class. Obviously it needs to consider type B and type C files too - in those cases it just converts
your own class declaration into C# syntax.

A challenge when working with type A files comes when your file includes other explicitly declared
classes. Those classes may occur anywhere in the file, and under Unityscript compilation rules they are not
subclasses of your main file-class as you might expect, but in fact possess the same (global) scope as the
file class. CSharpatron must gather together everything that relates to the file class into a single
contiguous block that can be framed within a suitable class declaration. Any other classes will be relocated
- in front of the file-class as it turns out - in order to keep their global scope in C# form.

'Using' statements and type-names
CSharpatron will automatically convert any Unityscript 'import' directive to C#'s 'using' command.
In addition the converter will always add:

using UnityEngine
using System

Other namespaces may also be added according to the types that your script makes use of, e.g. if you use
generic containers such as List<> or Dictionary<>, you will see ‘using System.Collections.Generic’ added.

Whenever a namespace is included, converted types will use correspondingly shortened names. Where
shortened names present ambiguity, e.g. the type ‘Random’ could mean ‘System.Random’ or
‘UnityEngine.Random’, then the fully qualified name is used.

Pragmas
Pragmas ‘strict’, ‘downcast’ and ‘explicit’ are all removed by the converter since these aren’t valid in C# .

Attributes
All attributes are converted from Unityscript to C# syntax, e.g.

@ExecuteInEditMode

@System.NonSerialized

@script RequireComponent (Camera)

[ExecuteInEditMode]

[System.NonSerialized]

[RequireComponent (typeof(Camera))]

As a special case, RequireComponent is also relocated to just prior to the main (Mono derived) class
definition.

Simple syntactic changes
There are a few areas in which syntax differs between Unityscript and C#. The following are all
automatically converted by CSharpatron:

• Variable declarations uses a different syntax, require inversion of type/name, e.g.

var myVar: int; int myVar

• Function declaration uses a different syntax, requires inversion of type/name for parameters, e.g.

function myFunc(myVar: int): int

{}

int myFunc(int myVar)

{}

 13

CSharpatron User Manual - v1.2

• Generic types have a slightly different syntax:

var myList: List.<int>; List<int> myList;

• Unityscript’s ‘boolean’ type becomes ‘bool’ for C#.
• Unityscript’s ‘String’ type becomes ‘string’ for C#.
• Unityscript’s ‘Number’ type because a ‘double’ for C#.
• Unityscript’s ‘base’ keyword (to represent a parent class) is replaced by ‘super’ in C#. CSharpatron also has

to relocate where callbacks to base class constructors occur - they must come between a constructor’s
prototype and its method body. See Appendix A15.

Serializable attribute
In Unityscript, any class that doesn’t derive from MonoBehaviour is internally tagged with the ‘Serializable’
attribute. CSharpatron will explicitly add this attribute for all types - unless they possess a ‘NonSerialized’
attribute - since failing to to so would cause all mapped objects to lose any data that used these types.

Field and type visibility
In Unityscript variables and methods are public by default and may be made private with the ‘private’
keyword. In C# the default becomes private and the ‘public’ keyword must be used. The same holds true
for classes and enums.
CSharpatron will automatically add or remove the appropriate keyword to achieve equivalent visibility in
all cases.

Default assignment to variables
When declaring variables in Unityscript, it is common practice to rely on them having been assigned a
default value by the compiler. In C# there is no default assignment (see here). Consequently CSharpatron
will automatically always assign a default, type-appropriate value to each non-assigned variable
declaration.

Reserved variable names
Any language prevents you from giving names to your variables that conflict with language keywords (or
at least try to do so you’ll likely see cryptic errors!). While C# shares many keywords with Unityscript, there
are some differences and many additional keywords in C#. You may well find that you have variables with
names such as ‘string’, ‘object’ or ‘params’ that won’t be permitted in C#. You can see a list of C# keywords
here.

CSharpatron will automatically fix any local variable names that would be illegal in C#. For class vars you
will be prompted to make manual fixes for any transgressions. This is necessary because the knock-on
effects of class scoped changes can easily spread to multiple files, plus you probably don’t want a class var
to receive some weird, automatically adjusted name!

Variable types
In Unityscript a variable can be declared without type and will be implicitly typed upon first assignment
(and unless a file contains ‘#pragma strict’, variable types can be reassigned at will). It is also common
practice to omit specific declaration of a type and let the compiler determine the type according to what is
assigned.

In C#, variables are always strictly typed, usually via explicit type declaration, or, for local (function)
variables declared using the ‘var’ keyword, their type will be determined from their assignment
(assignment must occur in the same line as declaration).

In order to perform the most thorough conversion, CSharpatron has to determine types in a very strict
manner. By default it will automatically convert your untyped/assignment-typed Unityscript vars into
explicitly typed C# variable declarations. (If you prefer to have locals use the ‘var’ keyword then you can
change this behavior via the ‘Conversion/Local Var Conversion’ configurable option).

You can see examples of CSharpatron’s type inference in Appendix A1- A7.

Please note that CSharpatron does not support type re-assignment; if #pragma strict isn’t present in a file
they you will always see a warning...

Implicit ‘new’ fix-ups
Unityscript doesn’t care if you use ‘new’ when allocating a new type: if you use it, fine, if you don’t then it’ll
be implicitly added whenever a type constructor is ‘called’. In C# use of ‘new’ is mandatory and CSharpatron
will add the keyword in all contexts that require it. See examples in Appendix A2, A3, A5.

Array types
Unityscript and C# use different syntax for assignment to array types. In C# this syntax includes the
requirement to ‘new’ an assigned array of constants.

• There are two optional approaches for representing multi-dimensional arrays, e.g. int [,] (‘multi-
dimensional’) and int[][] (‘jagged’).

• Of these, CSharpatron will always convert a multi-dimensional Unityscript array into a ‘jagged’ array type
(effectively an array of arrays, e.g. int[][]).

• CSharpatron will fully convert initialized Unityscript arrays into the equivalent C# syntax (using the
‘jagged' array form if dimensions are greater than one).

• Array’s declared in C# assembles may also be a mix of multi-dimensional and jagged form. From v1.1
CSharpatron should handle working with such arrays.

Array length is only accessible via array.Length in C# rather than Unityscript’s optional array.length form.
See array examples in Appendix A5.

 14

http://msdn.microsoft.com/en-us/library/aa691170(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa691170(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx

CSharpatron User Manual - v1.2

Type casts
Unityscript seldom requires you to use type-casts since type handling is so geared around type inference;
type promotions are handled silently. Where casts are used, the only form available is the postfix style ‘as’
operator.

The exact opposite is true in C# - with expressions involving multiple types, you must be totally explicit
about how type promotions occur, very little is ever just inferred. C# supports prefixed bracket-style casts
and postfixed ‘as’ casts. A primary difference between the casts is that ‘as’ casts may fail (yielding a null
result that you can test for) and may consequently be used only on what C# calls ‘nullable’ types.

As CSharpatron converts your script it is fully aware of all element types, and where required it will
automatically insert type-casts. In some cases this may seem like a lot, but only in very rare circumstances
will you find them to be unnecessary! NOTE: CSharpatron does respect implicit cast operators that may be
declared for specific assignment of a type and shouldn’t apply casts where these are valid.

When you’re doing math involving multiple vector types things can look especially ugly, not least since
you’re used to those automatic type promotions. However, without suitable casts the C# compiler will give
you errors complaining about operator ambiguity.

Where an element to be cast is a literal, CSharpatron will, in preference to inserting a cast, reformat the
literal to achieve the same result.

See type-cast examples in Appendix A12 - A14.

Numeric literals
There are differences in how decimal literals are formatted in Unityscript and C#

var myFloat = 1.0; // or...

var myFloat = 1.0f;

var myDouble = 1.0d;

float myFloat = 1.0f;

float myFloat = 1.0f;

double myDouble = 1.0;

CSharpatron will automatically reformat literals as appropriate, taking into account the preference you can
set using the Conversion Option Infer unqualified decimal literals as float. Please note that this option
defaults to ‘on’.

If you use scientific notation then similar suffix conversions will occur. CSharpatron will also consider the
range of a scientific notation value and if too large for a float will promote to a double. See more examples
in Appendix A2.

Character literals
Unityscript doesn’t support character literals. As a strange workaround when calling functions requiring
character parameters you can use form “X”[0], effectively accessing the first/only element of a string to
obtain the required ‘char’.

• When CSharpatron encounters these element 0 string accesses it will convert them to an actual C# literal.
• In the case of calling certain string functions (e.g. ‘Split’), you may see the docs list only prototypes that

expect a ‘char[]’ and yet your function calls passes only a single ‘char’. In these cases you’re actually
utilizing a .Net feature where the final array typed parameter of a function is declared a ‘params’ field and
may receive one or more comma de-limited values of the given parameter type.

Access to static class members
Unityscript allows you to access static variables and methods by prefixing them with the class name, or by
accessing them via a type instance as though they were non-static. In C# only the former approach is
permitted. C# will automatically made adjustments as required. See example in Appendix A16.

Implicit boolean comparisons
In Unityscript you can simply place a variable name into any ‘test’ context (e.g. an ‘if’ statement or ternary
operator) and a binary test of the variable is inferred. If the variable is an integer, the test is implicitly ‘if
intVar != 0’, or for a complex type it is ‘if typeVar != null’. Prefixing the variable name with a ‘!’ will negate the
inferred test, e.g. making the ‘int’ case ‘if intVar == 0’.
In C# only boolean types can be used in this way. For all other types, CSharpatron will infer the correct
implied test and adjust source output accordingly. See examples in Appendix A8.

Type comparison
In Unityscript a type-name can be used in a comparison operation against a Type. In C# the typeof()
operator must be used.

if (v.GetType == MyClass) if (v.GetType() == typeof(MyClass)

Another way to compare type is using Unityscript’s ‘instanceof’ operator. This is replaced by the ‘is’ operator
in C#:

if (v instanceof MyClass) if (v is MyClass)

In Unityscript typeof() can be used to test the type of a variable instance. In C# this isn’t possible. From v1.1
CSharpatron makes the following fix-up.

if (typeof(myVar)==String) if(myVar.GetType()==typeof(string))

 15

CSharpatron User Manual - v1.2

Function declaration
In addition to inversion of var-name and type, there are some other language differences when declaring
a function:

• C# requires that functions returning void explicitly declare this.
• C# requires that if a function is to act as virtual base then it must be declared ‘virtual’.
• C# requires that if a function is an override of a virtual base, then it has to be declared ‘override’.

CSharpatron makes these adjustments as required. You can see examples of these conversions in
Appendix A15.

Calling functions with ‘ref’ and ‘out’ parameters
Unityscript has no support for explicitly declared reference parameters but it will happily call library
methods whose fields may be declared with reference or output qualifiers. In C# it is required that when
making such function calls, the qualifiers ‘ref’ or ‘out’ are prefixed to the relevant parameters of the client’s
function call. CSharpatron will automatically detect when these qualifiers are necessary and add them
accordingly. See examples in Appendix A26.

‘Function’ type and C# delegates
Unityscript offers the type ‘Function’ that makes it possible to assign a function to a variable in order
implement object callbacks. You can literally pass any function to a ‘Function’ type without there being any
need to declare input or output parameter types. You can even assign functions of varying type to the
same ‘Function’ var, even with ‘#pragma strict’ defined (i.e. Function vars are dynamically typed).

C# offers a number of ways to achieve function indirection, with ‘delegates’ being the most obvious
replacement for your ‘Function’ instances. ...Of course you won’t be surprised to hear that a delegate has to
be declared in a totally explicit manner - you tell it the exact types of inputs and - if you want to have one -
the output type too. There are a few forms of delegate class with the simplest being the ‘Action<X>’ and
‘Func<X, Y>’ generic types where you would use ‘Action’ in cases with no return type and ‘Func’ where
there is (the final generic field is the return type).

A limitation of Mono 2.0 (as currently used in Unity) is that it implements an earlier version of the CLR
which only supports up to five generic type parameters for Action and Func. Where you need more than
five types you can use a different class to create a custom ‘Delegate<>’ type that has the exact prototype
that you need.

Conversion of Function vars to delegates is frankly the weakest aspect of script conversion using
CSharpatron. Available reflection data only reports the underlying type of a Function (this being
‘Boo.Lang.ICallable’ which cannot be used in C#), and without trawling through all files trying to
determine the function types you are assigning to your Function vars, there’s simply no way to

automatically infer the type fields required in your substitute delegate. (There is one exception: if you
assign a function to a local Function var CSharpatron can infer the exact prototype in this case).

Consequently in most cases where Functions var are declared or referenced you will see a conversion error
and a prompt to manually fix the issue. You can do that either in the output C# file, or - since making fixes at
the .JS stage and reconverting is neater - CSharpatron allows you to supply ‘type-hints’ that enable it to fix at
least all var declarations at conversion time.

See Appendix A11.

Anonymous methods
Unityscript allows you to declare anonymous methods that are assigned to a variable, e.g.

var testFunc = function() { Debug.Log("Hello"); };

var testFunc2 = function(a: String, b: String) { Debug.Log(a + b); };

var testFuncRet = function(a: String, b: String): String { return a + b; };

From CSharpatron v1.1, these would be converted to:

public Action testFunc = delegate() { Debug.Log("Hello"); };

public Action<string, string> testFunc2 = delegate(string a, string b)
{ Debug.Log(a + b); };

public Func<string, string, string> testFuncRet = delegate(string a, string b)
{ return a + b; };

Please note that although Unityscript allows you to declare and assign to an anonymous method var as
separate operations, C# requires that declaration and assignment occur within the same line; you may see
errors relating to this.

Extension methods
Although these cannot be declared in Unityscript they can be utilized in .js files. From v1.1 CSharpatron
should parse them correctly.

Unityscript doesn’t seem to mind if you utilize an extension method without using parentheses (i.e. as if it
were a property). This isn’t valid for C# and an attempt to do so with yield a ‘Fix .JS’ conversion error (JS18).

Properties
From v1.2 CSharpatron will correctly convert Unityscript properties (class methods using the ‘get’/‘set’
syntax) to C# properties with corresponding ‘get’/‘set’ methods.

 16

CSharpatron User Manual - v1.2

‘Finalize’ functions
Any such functions are automatically converted into C# class destructors to avoid C# compile error:
‘CS0249: Do not override `object.Finalize()'. Use destructor syntax instead’. See discussion here.

Multi variable assignment
Unityscript and C# both support assignment chains where multiple assignees received a single right-
hand-side value. C#’s stricter typing means that assignments that were valid in Unityscript may not be so
in C#. If you consider a statement such as ‘vec3Array = transformArray = null’ you can see why: assigning a
var of type ‘Transform[]’ to an array of type ‘Vector3[]’ clearly makes no sense! CSharpatron will split apart
such an assignment ensuring that each type receives a valid assignment, casting if necessary. See
examples in Appendix A14.

Modification of ‘foreach’ loop iteration vars
The Unityscript loop format ‘for X in Y’ is converted into a C# ‘foreach’ loop. There are some differences
however:
• A ‘foreach’ loop requires that the type of the iteration var be explicitly declared. This is handled by

CSharpatron.
• You may not write to the iteration var in a ‘foreach’ loop. CSharpatron will detect any attempt to do so

and log a ‘Fix .JS’ style error (JS05).

Assignment to value type return values
In C# it isn’t legal to write to components of a ‘value type’ if that type is itself a return from another value
type. For example if you write a line such as ‘myTransform.position.x = 0.0’ then this will yield a compile
error in C#. (The logic here being that reading from a value type (e.g. the Transform class) will return a copy
of the accessed field. Writing to a copy would obviously be pointless!)
Fixing these errors is slightly involved. Two approaches are:

Vector3 temp = myTransform.position;

temp.x = 0.0f;

myTransform.position = temp;

// or

myTransform.position = new Vector3(0.0f,

 myTransform.position.y,

 myTransform.position.z);

CSharpatron will automatically fix up the assignment using the first approach (at least this is true from
from v1.1 - it actually used the second approach in the previous release). The approach should work in all
cases barring multi-var assignment. Where consecutive lines access fields of the same host, CSharpatron

should combine these smartly to minimize use of temp vars. If a fix-up cannot be made then an error is
logged. You can see more examples in Appendix A24.

Local variable scoping differences
Unityscript’s local variable scoping rules appear to be (since I know of no official documentation) very
simple, and decidedly ‘loose’. ...You can declare a variable anywhere within a function and it remains
accessible at any later point within the function, irrespective of the relative nesting levels of declaration
and access. Because the var remains in scope for the remainder of the function, it is common-place (in my
script at least!) to find yourself reusing certain common variables - e.g. loop iteration vars - multiple times.
In these cases the first ‘for-loop’ declares and initializes ‘i’, each subsequent loop just reassigns and iterates
using the same ‘i’.

C# employs far stricter scoping rules: a variable is accessible only within the scope it is declared (although
its name is reserved for the remainder of the function).

Because of these differences, naïve conversion of function script would yield many out-of-scope access
issues for C#. To address this, CSharpatron will move where variables are declared (as required) to place
them in a scope appropriate to declaration and all accesses.

Obviously the converter will only make these changes very carefully and in rare cases may end up logging
an error if a safe redeclaration point can’t be determined.

You can see examples of scope fix-ups in Appendix A21 - A23.

Type inference when not using #pragma strict
Where Unityscript files do not specify #pragma strict, new local variables may be introduced to your scripts
just by introducing a new name on the left-hand side of an assignment, either within general function
scope, or in the initial field of a ‘for’ loop. C# still requires a concrete type, so CSharpatron will infer type
from the assignment and insert explicit declaration for each such variable.
NOTE: CSharpatron does not support re-typing of vars -the type is set once, upon first assignment. This is mainly
because C# doesn’t support this, so deducing the right fix-up in all cases would be no small feat!

Coroutines & Coroutine usage
Unityscript hides virtually all complexity when handling coroutines. For C# more specific formatting is
required.

• C# requires all coroutines to return the type ‘IEnumerator’.
• C# requires the yield command to return an object that implements the ‘IEnumerator’ interface

• ...Or null.
• The standard classes: WaitForSeconds, WWW, WaitForEndOfFrame all implement ‘IEnumerator’.

 17

http://stackoverflow.com/questions/2587006/why-finalize-method-not-allowed-to-override
http://stackoverflow.com/questions/2587006/why-finalize-method-not-allowed-to-override

CSharpatron User Manual - v1.2

 Please see Appendix A27 for examples of CSharpatron’s coroutine fix-ups.

Unityscript ‘in’ operator
Although I’ve yet to find any documentation on this, Unityscript does support Javascript’s ‘in’ operator,
used to determine if an array or container holds a given value, e.g. ‘if value in container’. Since C# offers no
equivalent operator CSharpatron will just log an error should an instance of this be identified.

Switch statements
There are a number of restrictions upon switch statement formatting in C# compared with Unityscript.

• In C# you cannot have a (non empty) ‘case’ block that just drops through into the ‘case’ below: if this is
desired behavior you must specifically engineer it. This can be done using C#’s ‘goto’ keyword.

• In C# you must have a ‘break’ in the final ‘case’/‘default’ clause of the switch.
• In C# it’s mandatory that the switch test var and all case conditions are of the same type.
• In C# it’s illegal to have a Type as a ‘case’ condition: the ‘switch’ statement must be reworked.

CSharpatron will log error JS14. A simple fix is to change the switch test to reference a type name, e.g.
‘myVar.GetType().Name’. You can then just put quotes around the types in your ‘case’ conditions.

• In C# all case conditions must be constants.

CSharpatron can fix the first three of these but not the last two. You can see examples in Appendix A18 -
A19.

‘while (1)’ becomes ‘while (true)’
CSharpatron will convert this common ‘loop always’ style to avoid type error/casting in C#.

parseInt, parseFloat
These methods aren’t available (or necessary) in C#. CSharpatron will automatically replace them suitable
type-casts.

Add component / component look-up methods
When adding a component or looking up component using any of the various methods to do so, there are
three different approaches that you may use:

var comp: MyComp = go.GetComponent(“MyComp”); // By name

var comp: MyComp = go.GetComponent(MyComp); // By type

var comp: MyComp = go.GetComponent.<MyComp>(); // Generic method, preferred

CSharpatron will automatically convert any usage of any of these these functions to use the preferred,
better performing, generic form. See examples in Appendix A10.

UnityEngine.Object.Instantiate
Seemingly against all language principles, use of this function in Unityscript doesn’t just return a
UnityEngine.Object and demand a cast to the actually instanced type, it can actually return an instance
whose type matches the ‘clone object’ type of the first parameter. For example (in a non #pragma strict file
at least), the following is legal Unityscript:

var obj = Instantiate(objPrefab, pos, rotation); // Returns Object type surely?

obj.transform.parent = otherObj.transform; // Nope, and don’t call me Shirley.

A literal C# conversion expects an Object type return and errors accordingly on the following line.
To work around this apparent Unityscript magic, CSharpatron has special treatment for Instantiate()
inferring a return type to match that of the clone object.

@CustomEditor
An implication of this attribute is another piece of Unityscript voodoo: it makes it so that the ‘target’ field of
the Editor class can be accessed as if it were of the class type declared in the attribute’s parameter!

CSharpatron wasn’t really written with conversion of editor scripts in mind and v1.0 didn’t support this
attribute. However from CSharpatron v1.1 ‘@CustomEditor‘ is properly supported in a manner that makes
type informed access to the ‘target’ field possible . To achieve this, whenever an editor function references
‘target’ the access is changed to be ‘target_cs’. This new var is automatically inserted at the top of the
function and assigned a suitably type-cast version of ‘target’. Conversion of editor scripts now becomes
significantly more likely to succeed!

 18

CSharpatron User Manual - v1.2

Limitations
Reflection Limits
As previously stated, CSharpatron makes extensive use of Mono’s type reflection capabilities in order to
understand underlying types as it parses your source. This gives it capabilities that go well beyond any
other source-level converters (that I’m aware of), but the approach does have a few inherent limitations.

• Only script visible to the compiler can be parsed. This means that any code within comments or non-
active #if conditions cannot be converted.

• All source must be in a valid, fully compiling state; syntax errors in your script may trip up CSharpatron.
• As you make fixes to source files you need to wait for the compiler to build those files before they can be

successfully re-converted (in fact the Workspace window blocks on this). Effectively you are waiting for
the modified assembly to be re-loaded after compilation completes.

NOTE: please see documentation on switching platform/build-defines under Usage.

Armed with the ability to look up information on any already compiled class, CSharpatron can tackle most
things you can throw at it. However where it’s necessary to convert from a Unityscript only feature to a
different approach in C# (e.g. going from Unityscript’s ‘Function’ type to C# delegates), reflection doesn’t
help us. The converter does as much as possible to help, but in some cases is limited by the fact that it only
knows about one file at a time so, e.g. if you use type-hinting to help convert ‘Function’ fields declared in
one file, a different file that might include calls to those Function types still can’t understand their type. (At
least not until the declaring files become ‘live’ in C# form and reflection of the converted types becomes
possible).

Auto Fix-up Limits
The converter goes a long way in terms of trying to fix up problems it encounters, but there are situations
where where the ‘right’ fix is entirely subjective, and so you’ll just see an error logged. Some examples:

• Illegally named function vars are automatically fixed because it is practical for CSharpatron to safely fix
up all references. For illegally named class vars there is no auto-fix since access to those fields may
extend beyond the declaring file.

• Where a function declaration declares a return type but none is supplied (something Unityscript doesn’t
warn about), what should be returned is something that demands careful programmer consideration!

• No initialized hash-table support. This syntax doesn’t exist in C#.
• Non constant case statement fields: you’ll probably want to implement an if/else ladder, but maybe not?
• In Unityscript you can assign a public class field to a private class field. In C# this is illegal (unless the

private field is static). I don’t understand the underlying cause of this limitation (?) but clearly it wouldn’t
be reasonable for CSharpatron to ‘blindly’ make a variable static in order to fix the assignment; this is a
fix-up that demands programmer judgment!

#pragma strict
CSharpatron's parsing was primarily written to assume that your input .js files contain #pragma strict (since
such script is already closer in nature to C# than script without the #pragma). That said, there’s nothing
stopping you from running the convert on non #pragma strict files, and in many cases it can still generate
clean, fully typed C# script.
The big limitation is that if your non #pragma strict file re-assigns variables with types that differ from the
first assignment, CSharpatron won’t know to adjust it’s internal representation of the var’s type (in fact it
will most likely try to cast the assignment to match the original type - this may well make good sense in all
but the most perverse cases!).
When using CSharpatron on a non #pragma strict file, you will always see a warning about this type
inference limitation and you should probably always check through all warnings to ensure that conversions
do make sense.

UnityScript 'Array' Class
Unityscript's untyped Array class has no direct equivalent in C#, although there are several ways to perform
the same task. In truth, use of this class has long been discouraged due to its inferior performance and lack
of type safety. Use of the generic list (List.<T>) is often recommended in its place.
Any usage of the Array type will be caught as errors in CSharpatron's log file. The best approach for
conversion is probably to switch your scripts to use a generic list before attempting conversion to C#.
Discussion of this topic can be found here.

Script File Location
Unity compiles scripts in a multi-pass manner with a strict order (see docs here). Files may only reference
types declared in their own pass or an earlier one. For this reason, in order for C# files to be made ‘live’ one
at a time (when there are likely still Unityscript files dependent upon them) CSharpatron has to move them
to a compilation pass earlier than the original Unityscript version. At present the converter is written to
only support conversion of files in the general project space that are moved into a Plugins subfolder when
made active. If you need to convert editor scripts within the Editor folder or Standard Assets then you would
currently need to work around this limitation.
You will find that only .js scripts not sitting below the Editor, Plugins or Standard Assets folders will be
considered for conversion.

 19

http://wiki.unity3d.com/index.php?title=Which_Kind_Of_Array_Or_Collection_Should_I_Use?
http://wiki.unity3d.com/index.php?title=Which_Kind_Of_Array_Or_Collection_Should_I_Use?
http://docs.unity3d.com/Manual/ScriptCompileOrderFolders.html
http://docs.unity3d.com/Manual/ScriptCompileOrderFolders.html

CSharpatron User Manual - v1.2

Trouble-shooting & Tips
If you are encountering conversion errors that don't make sense, be sure to consider the following:

• It is critical that you keep your project in a cleanly compiling state throughout the conversion
process! Basically whenever there are build errors this means that CSharpatron is unable to access the
corresponding assembly and all of the Reflected type information it would contain. This will lead to
conversion errors (unknown types) and may cause UI errors/confusion (e.g. seemingly incorrect
reporting of XRef statuses).

• Definitely don’t attempt an initial conversion if you have errors in your .js files.
• If you see errors in C# files as they are made active you can deactivate files to ‘clean’ the error state as

quickly as possible, and then focus attention on fixing issues in those files.
• Especially if you have a complex project, it really pays to take it slow with C# file activation, perhaps

1-4 at a time. (If you make too many active at once and an error is encountered in the first file all
other files will remain in a confusing ‘pending’ state because Unity won’t even attempt to compile
them until the initial file’s errors are resolved).

• Don't forget that the build defines you set for CSharpatron must match those that you have selected for
your current editor build: the converter relies on having built assemblies in which to look up all class
type information. You will need to match both the platform define and any custom defines you may
have configured in your project's build options.

• If you're finding that CSharpatron is unable to recognize certain types that reside with APIs beyond your
own game-code, then this may be because those APIs are explicitly excluded by the converter. At run-
time CSharpatron builds a database of type information from the vast pool of types accessible using
reflection. To reduce this initialization time we specifically exclude a range of Mono assemblies that (very
subjectively!) don't seem relevant to most Unity game developers. You can use the option Conversion
Option Filter libs list to stop this from happening.

• Occasionally you may find that it makes more sense to explicitly declare a variable type in your .js file
and re-convert rather than letting CSharpatron infer type. An example would be when you need a var to
be of base type so that various derived type objects can be assigned to it. CSharpatron’s approach of
looking at the first assignment can’t help in this case!

• You are blocked from converting files in Editor, Plugins or Standard Assets folders because these
special folders have fixed positions in Unity’s compilation order making it impossible for CSharpatron to
relocate files as it needs to for successful compilation (see Script File Location). A workaround for this is
to create a new, temporary project containing the reserved folder(s) you wish to reconvert. Rename the
folders (e.g. with some temporary suffix). You can now convert the files and move the resultant C#
versions to their original locations within your original project (and delete the .js originals).

• You will most likely find that both CSharpatron and the C# compiler will reveal at least a few errors in your
underlying .js files. Especially if a C# error doesn’t appear to make sense, be sure to check back to the
original .js source - perhaps a long-standing bug will suddenly be explained!

• If you start to see compile errors popping up in your .js files when .cs are made live then this is most likely
due to ‘import’ directives in those now removed .js files no longer being present during Unityscript
compilation. ...Really, every script file that uses classes from a system library (e.g. a container class from
System.Collections.Generic) should include the necessary namespace. However since files are compiled
in a block that encompasses all inter-dependent files, you can often get away without needing the
namespace import in every single file. To fix your new .js errors you just need to import the necessary
namespace into the affected file or update code to use ‘full’ names for all access to relevant types.

• If you’re getting compile errors in ConversionTemp.cs then most likely this is because your workspace
doesn’t include the original scripts for all types that are being referenced. In these cases you should
ensure that you don’t have Build stubs file during conversion ticked and you can safely delete
ConversionTemp.cs. ...When needed you can just use the Rebuild Stubs File button to re-generate the
file.
If you still see ConversionTemp.cs errors this suggest a support issue, however be aware that this file can
be deleted at will in order to return to a cleanly compiling state (at the expense of file-shadowing not
being possible).

Array Conversions
When converting from an Unityscript Array to a C# compatible type there are a few obvious obvious
choices you might want to replace it with:

• Where array elements are all of the same type and the array is populated once, either at point of
initialization or by incrementally adding members up to a known maximum, a built-in array is your best
choice.

• Where array elements are all of the same type and the array is used dynamically, either when an
unknown number of elements are to be added or content will be changing dynamically, a generic list
(List<T>) is your best option. See documentation here.

• Where array elements may each be of differing types you can use an ArrayList. See documentation here.
Note that there are benefits to using a list of fixed type (better error checking by compiler, no need for
type-casts upon access) so only use this type when you really need type variance and a generic list isn’t
an option.

On occasion you may be better served with a more specific container, e.g. a Hashtable, Dictionary, Stack, or
Queue.

Since all of these optional types are usable in Unityscript, the best approach is to make array conversions in
your .js files prior to conversion (or else use the converter to locate usage, make your changes and then re-
convert those files).

 20

https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.arraylist(v=VS.100).aspx
https://msdn.microsoft.com/en-us/library/system.collections.arraylist(v=VS.100).aspx
https://msdn.microsoft.com/en-us/library/system.collections.hashtable.aspx
https://msdn.microsoft.com/en-us/library/system.collections.hashtable.aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/3278tedw(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/3278tedw(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/7977ey2c.aspx
https://msdn.microsoft.com/en-us/library/7977ey2c.aspx

CSharpatron User Manual - v1.2

If you are using any container types other than a built-in array, then you will need to add an import
directive at the top of your file:

import System.Collections.Generic; // For List<T>, Dictionary<T>, Stack<T>, etc...

import System.Collections; // For ArrayList...

Some other useful syntax to know:

// Built in arrays...

var myArray: int[]; // Declare an uninitialized array variable

var myArray = new int[10]; // Declare an empty array with room for 10 elements

var myArray = [1, 2, 3, 4]; // Create an array filled with the given value

var arraySize = myArray.length; // Get the length of an array

// Generic lists...

var myList = new List.<int>(); // Create a new, empty list ready to hold ‘ints’

myList.Add(1); // Add elements...

myList.Add(2); // NOTE: List<T> can’t be initialized in .js :(

myList.RemoveAt(0); // Remove the first element in the list

myList.RemoveAt(myList.count - 1); // Remove the last element in the list

myList.AddRange(myArray); // Add contents of built-in array to a list

var myArray = myList.ToArray(); // Initialize a built-in array with list elements

There is an excellent post on the various list and container types available to you here.

Function to Delegate conversions
Conversion of Unityscript Function variables to C# delegates can be fiddly because CSharpatron has no
way to infer how you use a given Function var and specifically what the prototypes of functions you assign
to that var will be.

Your best tool to convert over a Function var are type-hints. These are comments that you add to a .js file
prior to conversion. You need to add a type-hint just prior to each Function reference, e.g. on the line
before declaration of a Function var, or preceding a function that accepts Function type parameters.

Here are some examples:

// !CSTYPE! onEnterCallback: Action<TriggerObject,Collider>; onExitCallback:
Action<TriggerObject,Collider>;

function AcquireProximityTrigger(layerMask: LayerMask,

 triggerRadius: float,

 onEnterCallback: Function,

 onExitCallback: Function,

 maintainInTriggerLists: boolean,

 tagList: String[]) { … }

// !CSTYPE! onBlocked: Action; onBreak: Action;

function WaitForNavigation(targetInfo: AITaskNavTo.TargetInfo, onBlocked: Function,
onBreak: Function) { … }

// !CSTYPE! onPlacementCallback:Func<GrabbedObject,bool>;

var onPlacementCallback: Function;

And here’s the converted output:

public void AcquireProximityTrigger(LayerMask layerMask,

 float triggerRadius,

 Action<TriggerObject, Collider> onEnterCallback,

 Action<TriggerObject, Collider> onExitCallback,

 bool maintainInTriggerLists,

 string[] tagList) { … }

public IEnumerator WaitForNavigation(AITaskNavTo.TargetInfo targetInfo,

 Func<bool> onBlocked,

 Func<bool> onBreak) { … }

public Func<GrabbedObject, bool> onPlacementCallback;

Even with type hints, you may still encounter conversion errors at the point that Function vars are invoked if
this occurs in a separate file to the var’s declaration (a symptom of CSharpatron converting a single file at a
time). In such cases you can usually ignore these errors and proceed with activation of the converted file,
however you will still need the declaring file to be already compiling in C# for your file to build without
error.

A more complicated case is where you are assigning a function to a Function var that receives more than 4
parameters (see why here). The best approach here is to use type hints as usual, e.g.

 21

https://robotduck.wordpress.com/2009/11/04/88/
https://robotduck.wordpress.com/2009/11/04/88/

CSharpatron User Manual - v1.2

// !CSTYPE! captureFunc:
Action<Camera,Plane[],PropLocator[],PropMeshInfo,PropLocator.Flags>;

var captureFunc: Function;

Which should get you through conversion... However the C# compiler will complain about the delegate
having too many generic fields. To fix this, you could edit your .cs/.csTest file to use a custom delegate
type, e.g.

public delegate void PropCaptureDelegate(Camera camera, Plane[] frustumPlanes,
PropLocator[] candidates, PropMeshInfo pmi, PropLocator.Flags captureFlag);

public PropCaptureDelegate captureFunc;

Limits of File-shadowing
File-shadowing (see here) is a powerful tool to circumvent dependency issues and allow to to get C# files
into a compilable state but it does have some limitations.

At any moment during conversion, the ‘stubs’ file (CSharpatronTemp.cs) must supply type information for
every type not currently compilable in C# form. When building this file, as usual, Reflection is used to look
up the necessary information. However, some types have no known (or valid) representation in C#, e.g. our
usual friends: Unityscript Arrays and Function vars and also Boo functions. Any such fields are just
assigned the type ‘object’ within the stubs file which makes the file perfectly compilable, but doesn’t help
at all when a shadowed file tries to reference the type (leading to unknown type errors).

The solution in all such cases are Dependency Hacks. ...So the principle here is simple: just comment out
any lines that are throwing unknown type errors, being sure to comment each case with the dependency
hack ‘tag’ (by default, this would be // !CSDEP!). This should permit the file to now compile. Using the tag
has two purposes: firstly CSharpatron will clearly show any file that is ‘live’ but contains a dependency hack
by coloring its icon cyan. Secondly, once you have all files compiling, have de-shadowed them (so
dependencies are no longer an issue), you can remove the dependency hacks by sorting your workspace
by the ‘Live’ field to see the cyan icons all grouped, and then using your text editor to search for and
uncomment each hack.

I used dependency hacks in a few places for my own project conversion and if you’re working with a large
or complicated project its pretty likely you’ll have places that may need to use this approach too.

Manually de-activating a C# file
Hopefully you’ll never need this information, however if Unity is shut-down or crashes at a time when you
have one or more active C# files containing errors then you’ll may need to follow this process to get back
to an error-free state (and so gain access to a window layout that includes CSharpatron!).

NOTE: Close Unity before doing any of this and use Finder/Windows Explorer to perform these file
operations. Please follow the steps very carefully to avoid potentially breaking script links within your
mapped GameObjects!

• Move the broken C# file and its .meta file from Plugins/CSharpatronConverted/<yourPath> back to the
original location (<yourPath>).

• Rename the C# file as <yourFile>.csTest.
• Rename the meta file from <yourFile>.cs.meta to <yourFile>.js.meta.

• Move the original .js file from CSharpatronWork/Backup/<yourPath> to the original location
(<yourPath>).

• Rename the file from <yourFile>.jsOrig to <yourFile>.js.

If you are using Source Control it may just be easier to revert the ‘removal’ of the .js/.js.meta/.csTest files and
the ‘addition’ of the .cs file.

You’ll also need to make repairs in the workspace file in order for CSharpatron to be kept in sync:

• Load the project file ‘CSharpatronWork/Workspace.txt’. You’ll need to find the block relating to your
file, it’ll start with ‘$<yourFile>’.

• Delete the line containing ‘@isLive’. If present, also delete ‘@isShadowed’.
• Be very careful not to accidentally delete or damage Workspace.txt - there’s lots of information in here that

would be difficult to retrieve.

NOTE: You can find some more ‘best practices’ mentioned in the Case Study appendix.

Support
If you encounter problems using CSharpatron, especially fatal errors, recurring conversion issues or errors
in the building of the ‘stubs’ file, please let me know and I'll do my best to issue a fix.

Thanks for buying (or considering) CSharpatron. Best of luck with your conversions!

Please email: csharpatron@spoonsized.com.

 22

CSharpatron User Manual - v1.2

Appendix A - Example Conversions
The following are all examples of script conversions performed by CSharpatron.

Original Unityscript CSharpatron converted C#

// Typed var declarations in Unityscript...

var intVar1: int;

var floatVar1: float;

var boolVar: boolean;

var stringVar1: String;

// Many (most?) declarations in Unityscript infer var type...

var intVar1 = 1;

intVar2 = 1; // when not #pragma strict

var longVar1 = 1L;

var hexVar1 = 0x12345;

var hexVar2 = 0x12345L;

var floatVar1 = 1.0;

var floatVar2 = 1.0;

var floatVar3 = .1d;

var floatVar4 = 3.142F;

var sciVar1 = 5e+2;

var sciVar2 = 3e-200;

var charVar1 = "a"[0];

var charVar2: char = "a"[0];

var charVar3 = "\n"[0];

var str1 = 'Noodle';

var str2 = 1.0 + 'apple';

var str3 = "a" + "b";

var str4 = "a" + "b"[0];

var str5 = 'Rocko\'s Modern Life';

var intArr = [1, 2];

var s1 = ['"hello"', "world"];

var f1 = [1 + (3 * 4), 2, 3.5];

// Equivalent declarations in C#...

int intVar1;

float floatVar1;

bool boolVar; // Type name adjusted for C#

string stringVar1; // Type name adjusted to C# ‘built-in type’ form

// CSharpatron will infer and declare an exact type in 99% of cases...

int intVar1 = 1;

int intVar2 = 1; // Var decl added for first assign to new var name.

long longVar1 = 1L;

int hexVar1 = 0x12345; // Hex format not a problem

long hexVar2 = 0x12345L; // Hex longs too

float floatVar1 = 1.0f; // Added suffix (assuming ‘decimals as floats’ = true) OR...

double floatVar2 = 1.0; // (Different output if ‘decimals as floats’ = false)

double floatVar3 = .1; // Use of double specifier, short-hand supported too

float floatVar4 = 3.142F; // Fully qualified constant always converted as float

float sciVar1 = 5e+2f; // Scientific notation receives suffix too

double sciVar2 = 3e-200; // Always double because single precision range is exceeded

char charVar1 = 'a'; // Char type inferred, conversion to real char literal

char charVar2 = 'a'; // Same output for explicit form

char charVar3 = '\n'; // Not confused by escaped chars!

string str1 = "Noodle"; // Double quotes mandatory for C# strings

string str2 = 1.0f + "apple"; // Type inferred from expression, quotes converted

string str3 = "a" + "b";

string str4 = "a" + 'b'; // Conversion to ‘real’ char literal

string str5 = "Rocko's Modern Life"; // Quotes converted, fix-up for \’ within string

int intArr = new int[] { 1, 2 }; // Reformatted array, implied ‘new’

string[] s1 = new string[] {"\"hello\"", "world"}; // ...Array fixes plus quote fix-ups

float[] f1 = new float[] {1 + (3 * 4), 2, 3.5f}; // Type inference from varied field types

 23

A2

A1

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// Untyped var declarations, continued...

var vecVar1 = Vector3(1.0, 2.0, 3.0);

var listVar = new List.<float>();

var dictVar = Dictionary.<String, int>();

var elemFromList = listVar[0];

var elemFromDict = dictVar["thing"];

// Complex assignments can make var type less obvious...

var complex1 = 5 | 4;

var complex2 = 5 || 4;

var complex3 = (5 + 3) && 2;

var complex4 = (5 * (2 + 3)) ^ 1;

var complex5 = 3 | (5 + 3);

var complex6 = 3.0 / (5 + 3);

var complex7 = ((3 / (5.0 + 3) * 24) % 3) + 9;

var complex8 = 3 / (5 + 3.0);

var complex10 = complex1 && complex2;

// Multi-dimensional arrays...

var array2d =

[

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

];

var anotherArray = array2d;

var arrayElem = array2d[1];

// Types derived from lib properties...

var testRnd1 = Random.value;

var testRnd2 = Random.Range(1.0, 5.0);

var normVec = vecVar1.normalized;

var dotProd = Vector3.Dot(vecVar1, vecVar2);

// Untyped var declarations, continued...

Vector3 vecVar1 = new Vector3(1.0f, 2.0f, 3.0f);

List<float> listVar = new List<float>(); // Fix-up for different generic syntax

Dictionary<string, int> = new Dictionary<string, int>();

float elemFromList = listVar[0]; // CSharpatron fully understands generics

int elemFromDict = dictVar["thing"];

// CSharpatron parses types in each expression, promoting according to operator precedence

int complex1 = 5 | 4;

bool complex2 = (5 != 0) || (4 != 0); // Comparison fix-ups necessary for boolean op.

bool complex3 = ((5 + 3) != 0) && (2 != 0);

int complex4 = (5 * (2 + 3)) ^ 1;

int complex5 = 3 | (5 + 3);

float complex6 = 3.0f / (5 + 3);

float complex7 = ((3 / (5.0f + 3) * 24) % 3) + 9;

float complex8 = 3 / (5 + 3.0f); // Float element means type promoted to float

bool complex10 = (complex1 != 0) && complex2; // Infer type from exp. with inferred types!

// Multi-dimensional arrays...

int[][] array2d = new int[][]

{

 new int[] { 1, 2, 3 }, // Each sub array requires its own ‘new’

 new int[] { 4, 5, 6 },

 new int[] { 7, 8, 9 }

};

int[][] anotherArray = array2d; // Inferred type info is remembered throughout conversion

int[] arrayElem = array2d[1]; // Array accesses are fully understood

// Types derived from lib properties...

float testRnd1 = UnityEngine.Random.value; // Full type name to avoid ambiguity with System.Random

float testRnd2 = UnityEngine.Random.Range(1.0f, 5.0f);

Vector3 normVec = vecVar1.normalized;

float dotProd = Vector3.Dot(vecVar1, vecVar2);

 24

A3

A4

A5

A6

CSharpatron User Manual - v1.2

Original Unityscript Converted C#

// Operators have return types just like regular functions...

var matrixVar = Matrix4x4.identity;

var quatVar = Quaternion.identity;

var vecResult1 = quatVat * vecVar;

var vecResult2 = matrixVar.GetColumn(1) - vecResult2;

var vecResult3 = vecResult1 / floatVar;

var matResult = matrixVar * matrixVar;

// Conversion of type to bool for compare is automatic in US:

if (boolVar) Debug.Log("Boolean is true");

if (intVar) Debug.Log("Int is non zero");

if (floatVar) Debug.Log("Float non zero");

if (!intVar) Debug.Log("Int is zero");

if (!!intVar) Debug.Log("Int is non-zero");

if (classVar)

{

 Debug.Log("Class var is not null");

}

// Ternary operators...

var t1 = classVar.myBool ? Screen.width: 640;

var t2 = intVar > 5 ? 1.0 * Screen.width: 640.0;

var t3 = intVar ? true: false;

// There are three ways to look up Unity components...

var go = GameObject();

var mf1: MeshFilter = go.GetComponent(MeshFilter);

var mf2: MeshFilter = go.GetComponent("MeshFilter");

// Preferred approach:

var mf3: MeshFilter = go.GetComponent.<MeshFilter>();

var subObj = go.Find("Nemo");

// CSharpatron infers var type from expressions involving custom operators...

Matrix4x4 matrixVar = Matrix4x4.identity;

Quaternion quatVar = Quaternion.identity;

Vector3 vecResult1 = quatVar * vecVar; // Type inferred from operator*

Vector3 vecResult2 = matrixVar.GetColumn(1) - vecResult2;

Vector3 vecResult3 = vecResult1 / floatVar;

Matrix4x4 matResult = matrixVar * matrixVar;

// In C# non bool types must be explicitly compared with 0/null...

if (boolVar) Debug.Log("Boolean is true"); // No change for actual boolean compare

if (intVar != 0) Debug.Log("Int is non zero"); // Made explicit comparison to avoid C# err.

if (floatVar != 0.0f) Debug.Log("Float non zero");

if (intVar == 0) Debug.Log("Int is zero"); // Not confused by negation!

if (intVar != 0) Debug.Log("Int is non-zero"); // Not confused by confusing negation!

if (classVar != null) // Comparison value chosen according to type

{

 Debug.Log("Class var is not null");

}

// Ternary operators require optional values of equivalent type in C#...

int t1 = classVar.myBool ? Screen.width: 640;

float t2 = intVar > 5 ? 1.0f * Screen.width: 640.0f; // 640 converted to float for type consistency

bool t3 = intVar != 0 ? true: false;

// CSharpatron always converts to preferred look-up style using generic function GetComponent<>...

GameObject go = new GameObject();

MeshFilter mf1 = go.GetComponent<MeshFilter>();

MeshFilter mf2 = go.GetComponent<MeshFilter>();

MeshFilter mf3 = go.GetComponent<MeshFilter>();

GameObject subObj = go.Find("Nemo");

 25

A7

A8

A9

A10

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// Indirectly calling a function is trivial in Unityscript...

function TestFunc(intParam: int): boolean

{

 return true;

}

var funcCallback = TestFunc; // Var has type ‘Function’

// A Unityscipt ‘Function’ var can be assigned absolutely any

// parameter types with no pre-declaration.
// It can return any type with no pre-declaration.
// CSharpatron can infer nothing useful from this type :(
var callbackVar1: Function;

var callbackVar2: Function;

// Function receiving Function type params...

function UpdateStuff(Function testCallback,

 Function updateCallback)

{

 ...

 if (testCallback(intVar))

 {

 updateCallback(stringVar, intVar);

 }

 ...

}

// For C# calling a function indirectly is just as easy (using a Delegate) but is strictly typed...

bool TestFunc(int intParam)

{

 return true;

}

Func<int,bool> funcCallback = TestFunc; // Direct assignment to local var *can* infer delegate type

// Type inference for class scoped delegates & unassigned local vars is NOT possible.

// In these cases CSharpatron will log an error and write dummy values. MANUAL FIX-UP IS REQUIRED.

Func<PARAM_FIX_ME, RETURN_FIX_ME> callbackVar1 = null;

// However, type hints can be used. These are comment blocks that prefix unknown types.
// Their format is: ‘!CSTYPE! varName:<DelegateType>[,[repeat]]’

// !CSTYPE! callbackVar1:Action<string>;

Action<string> callbackVar2 = null;

// You can include as many (upcoming) named vars as you want in a single block.

// !CSTYPE! testCallback:Func<int,bool>; updateCallback:Action<string,int>;

bool UpdateStuff(Func<int,bool> testCallback,

 Action<string,int> updateCallback)

{

 ...

 if (testCallback(intVar))

 {

 updateCallback(stringVar, intVar);

 }

 ...

}

 26

A11

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// Unityscript almost never needs type-casts...

intVar = MyEnum.Value;

enumVar = 0;

prefab = prefabArray[PrefabType.MoonWizard];

intResult = sizeArray[enumType];

intArray[0] = floatVar;

intArray[0] = -floatVar;

avgTime /= frameCount;

var curve: Curve = t==0 ? Bezier(pts): CatmullRom(pts, true);

var go: GameObject = UnityEngine.Object.Instantiate("boo",

 Vector3.zero, Quaternion.identity);

floatVar = 0;

doubleVar = 1;

unsignedVar = 5;

var str = "Num:" + (array != null ? array.length: "n/a");

// Multiple assignments with varying types is fine in US...

floatVar1 = intVar1 = floatVar2 = 12345.0;

// Unityscript doesn’t have a problem with this:

transformArray = vecArray = null;

// C# requires casts whenever types are converted. CSharpatron automatically adds them, as needed...

intVar = (int)MyEnum.Value;
enumVar = (MyEnumType)0;
prefab = prefabArray[(int)PrefabType.MoonWizard];
intResult = sizeArray[(int)enumType];
intArray[0] = (float)floatVar;
intArray[0] = (float)(-floatVar); // Bracketing required in this case

avgTime /= (float)frameCount;
Curve curve = t==0 ? (Curve)new Bezier(pts): (Curve)new CatmullRom(pts, true);
GameObject go = (GameObject)UnityEngine.Object.Instantiate("boo", Vector3.zero, Quaternion.identity);

// CSharpatron works hard to avoid making unnecessary casts. In some cases, e.g. when a statement

// includes literals the literal may be reformatted to achieve the same effect...

floatVar = 0.0f;

doubleVar = 1.0;

unsignedVar = 5; // Integer constants are implicitly ‘signed’ but CSharpatron won’t cast them

string str = "Num:" + (array != null ? "" + array.Length: "n/a"); // Used ‘"" +’ to promote to string

// C# doesn’t let you assign one type to a different type without a cast. Assignment must be split...

floatVar1 = floatVar2 = 12345.0f;

intVar1 = (int)floatVar1; // Int var receives suitably cast value

// C# won’t let you assign a Vector3[] to a Transform[]! CSharpatron separates out elements...

transformArray = null;

vecArray = null;

 27

A12

A14

A13

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// A simple Unityscript class...

// NOTE: any non MonoBehaviour derived class is serializable.

class TestBase

{

 var publicVar: int;

 private var privateVar: int;

 static var staticVar: boolean;

 function TestBase(intVar: int)

 {}

 function Foo() { Debug.Log("Base"); }

 private function Bar() {}

 static function Bar() {}

}

class TestDerived extends TestBase

{

 function TestDerived(intVar: int)

 {

 super(intVar);

 }

 function Foo() { Debug.Log("Derived"); }

}

// Calling a static function in Unityscript...

TestBase.Bar();

// ...or...

myBaseTypeVar.Bar();

// In Unityscript the ‘instanceof’ operator compares type...

if (myVar instanceof UnityEngine.GameObject) { ... }

// CSharpatron’s conversion of the same class to C#...

[System.Serializable] // Added to remain consistent with US - must be explicitly added in C#

public class TestBase // ‘public’ keyword added

{

 public int publicVar; // ‘public’ keyword added

 int privateVar; // ‘private’ keyword removed

 public static bool staticVar; // ‘public’ keyword added

 public TestBase(int intVar)

 {} // ‘public’ keyword added

 public virtual void Foo() { Debug.Log("Base"); } // ‘public’, ‘virtual’ keywords added

 void Bar() {} // ‘private’ keyword removed

 public static void Bar() {} // ‘public’ keyword added

}

[System.Serializable]

public class TestDerived: TestBase // ‘public’ keyword added

{

 public TestDerived(int intVar)

 : base(intVar) // ‘super’ becomes ‘base’. Repositioned as C# requires

 {

 }

 public override void Foo() { Debug.Log("Derived"); } // ‘public’, ‘override’ keywords added

}

// Calling a static function in C# must always be done using the class name...

TestBase.Bar();

// So this version is automatically fixed:

TestBase.Bar();

// C# uses the ‘is’ operator instead...

if (myVar is GameObject) { ... } // (Type also simplified by CSharpatron)

 28

A15

A16

A17

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// Unityscript switch statements are very open to abuse...

 switch(state)

 {

 case 1: break;

 case 2:

 case 3:

 Debug.Log("Shared state");

 break;

 case 4:

 Debug.Log("4");

 case 5:

 Debug.Log("5");

 default:

 }

// Mixing types in switch statements not a problem in US...

enum TestEnum { Val1, Val2 };

 switch(intVar)

 {

 case TestEnum.Val1: break;

 case TestEnum.Val2: break;

 }

// In Unityscript type names can be used in comparisons...

 if (myVar.GetType() == MyClass)

 {

 ...

 }

// In C# ‘drop through’ must be specifically engineered...

 switch(state)

 {

 case 1: break;

 case 2: // Drop-through ok here since case 2 is empty

 case 3:

 Debug.Log("Shared state");

 break;

 case 4:

 Debug.Log("4"); // Drop-through here is illegal. CSharpatron will *warn*

 goto case 5; // ...but use ‘goto’ to achieve controlled drop-through

 case 5:

 Debug.Log("5");

 goto default; // Controlled drop-through using ‘goto’

 default:

 break; // Closing break is mandatory. CSharpatron added one here

 }

// C# requires consistent type for the case comparisons...

public enum TestEnum { Val1, Val2 };

 switch(intVar)

 {

 case (int)TestEnum.Val1: break;
 case (int)TestEnum.Val2: break;
 }

// In C# you must use the typeof() operator when comparing a Type...

 if (myType.GetType() == typeof(MyClass))

 {

 ...

 }

 29

A18

A19

A20

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// US local variable scoping is extremely loose and can very

// easily leave you open to errors, e.g. this is legal script:

{

 if (testVar > 0)

 {

 var intVar = 1;

 }

 else

 {

 }

 DoSomething(intVar);

 // How is intVar still in a usable scope?

 // What does it contain? (0 prob. but who knows for sure?)

}

// Unityscript forbids re-use of a var name within a function,

// even when you might expect scope to be different...

{

 for(var i = 0; i < 16; i++) { DoSomething(i); }

 // Resetting loop vars like this is very common...

 for(i = 0; i < 5; i++) { DoSomethingElse(i); }

}

// Of course you might occasionally exploit how scoping works:

{

 for(var i = 0; i < 16; i++) { DoSomething(i); }

 for(; i > 0; i--) { DoSomethingElse(i); }

}

// Another case, this one non #pragma strict...

{

 for(i = 0; i < 16; i++) { DoSomething(i); }

 i = 8;

 DoSomethingElse(i);

}

// C# has clearly defined scoping rules. CSharpatron will *warn* but because scoping problems are

// extremely prevalent (especially with C#’s stricter rules) it will also fix up bad scoping...

{

 int intVar = 0; // Var declaration moved to a scope compatible with all usage

 if (testVar > 0)

 {

 intVar = 1; // Now just an assignment

 }

 else

 {

 }

 DoSomething(intVar); // Now we can be sure what’s getting passed...

}

// C# scoping rules won’t permit ‘reuse’ of a loop var as in the Unityscript original.

// CSharpatron will automatically declare a new var...

{

 for(int i = 0; i < 16; i++) { DoSomething(i); }

 for(int i = 0; i < 5; i++) { DoSomethingElse(i); } // New var declaration

}

// ...CSharpatron is smart enough to account for such a case...

{

 int i = 0; // Declaration moved outside loop

 for(i = 0; i < 16; i++) { DoSomething(i); }

 for(; i > 0; i--) { DoSomethingElse(i); }

}

// This one is handled in a similar way, NOTE: need for var decl automatically inferred.

{

 int i = 0; // Declaration moved outside loop

 for(i = 0; i < 16; i++) { DoSomething(i); }

 i = 8;

 DoSomethingElse(i);

}

 30

A21

A22

A23

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// Script like the following is often used in Unityscript:

 var t = obj.transform;

 ...

 t.position.x = 0.0;

 t.eulerAngles.y += step;

 t.eulerAngles.z = 180.0;

// ‘for x in y’ style loops require attention in C#...

 for (obj in objArray)

 {

 obj.DoSomething();

 }

// In some cases these loops will require manual fixes, e.g.

 for (col in colorArray)

 {

 col = Color.green;

 }

// In Unityscript, passing params ‘by reference’ isn’t

// something that you have to think about...

 Vector3.OrthoNormalize(myRight, myUp, myFwd);

 ang = Mathf.SmoothDampAngle(ang, targ, vel, 0.5, 20.0);

 hit = Physics.Raycast(pos, fwd, out hitResult, 5.0f, mask);

// In C# it is illegal to *write* to a ‘value type return value’. CSharpatron makes these fixes:

 Transform t = obj.transform;

 ...

 var tmp_cs1 = t.position; // Assignment to new temp var

 tmp_cs1.x = 0.0f; // Modify temp var

 t.position = tmp_cs1; // Re-assign from temp

 var tmp_cs2 = t.eulerAngles;

 tmp_cs2.y += step; // Access to shared fields on consecutive lines...

 tmp.cs2.z = 180.0f; // ...is optimized to utilize the same temp var

 t.eulerAngles = tmp_cs2;

// The loop becomes a ‘foreach’ loop. The element type must be explicitly declared...

 foreach (GameObject obj in objArray)

 {

 obj.DoSomething();

 }

// ...In C# the loop iteration var is READ ONLY. CSharpatron will flag the following as an error...

 foreach (Color col in colorArray)

 {

 col = Color.green; // ERROR! Manual fix required since resolution is case dependent!

 }

// In C# these function calls all have parameters that must receive additional qualifiers...

// CSharpatron automatically adds them, as required.

 Vector3.OrthoNormalize(ref myRight, ref myUp, ref myFwd);
 ang = Mathf.SmoothDampAngle(ang, targ, ref vel, 0.5f, 20.0f);

 hit = Physics.Raycast(pos, fwd, out hitResult, 5.0f, mask);

 31

A24

A25

A26

CSharpatron User Manual - v1.2

Original Unityscript CSharpatron converted C#

// Coroutines usage requires very little syntax in US…

 StartCoroutine(MyCoroutine1(10));

 // Alternatively...

 StartCoroutine("MyCoroutine2");

void MyCoroutine1(someVar: int)

{

 ...

 // Just containing a ‘yield’ makes this a coroutine

 yield;

}

void MyCoroutine2()

{

 while(1)

 {

 ...

 yield WaitForSeconds(0.5);

 }

}

// You might write a function to kick off a coroutine...

void StartMyCoroutine()

{

 return StartCoroutine(MyCoroutine(0));

}

// Unityscript properties are converted (v1.2)...

var health: float;

public function get Health(): int {return health;}

public function set Health(value: int) {health = value;}

// In C# coroutines require more careful treatment...

 StartCoroutine(MyCoroutine1(10));

 // Alternatively...

 StartCoroutine("MyCoroutine2"); // This one can be stopped with StopCoroutine("MyCoroutine2")

public IEnumerator MyCoroutine1(int someVar)

{

 ...

 // C# always requires that you return an IEnumerator object or ‘null’ so CSharpatron fixes it:

 yield return null;

}

public IEnumerator MyCoroutine2()

{

 while(true)

 {

 ...

 yield return new WaitForSeconds(0.5f);

 }

}

// This will actually cause a CSharpatron ERROR since the declared return type of the function

// would need to change (to become IEnumerator) which would suggest the function to be a coroutine

// when it isn’t! ...Just remove the ‘return’.

// Converted properties...

float health;

public int Health { get {return health;} set {health = value;} }

 32

A27

A28

CSharpatron User Manual - v1.2

Appendix B - Common Conversion Errors
Whenever CSharpatron encounters unexpected formatting, script that cannot be parsed, or it makes a
significant fix-up, it may write out an error or warning to the log file. There are many internal error checks,
but in general there are two classes of message:

a) Warnings or errors that are ‘expected’ - i.e. things that are fairly normal to see when processing
normal, correctly formatted files. These may well be issues that require your attention; they will be
things that you might expect to see during the conversion process.

b) Warnings or errors that should not normally be seen. These should only occur if a user attempts to
convert badly formatted source or if the input is highlighting a bug or omission in CSharpatron.

This appendix will discuss output message of the first type to help you understand the possible action you
should take.

‘Fix .JS’ Error Types
These are errors highlighting problems encountered by CSharpatron that you will need to manually
resolve (within the original .js source) before a file can be successfully re-converted into compilable C#.

JS00: Non void function failed to return a value. This will cause a C# error.
You have a .js function that declares a return type but the function fails to actually return anything.
Fix: add missing return statement.

JS01: Hashtable initialization not supported in C#. Type not converted.
CSharpatron encountered in-line initialization of a hash-table. C# doesn’t possess equivalent syntax (?) and
so CSharpatron is unable to offer any automatic fix-up.
Fix: you will need to initialize your hash table in a different way - perhaps runtime assignment of values. Perhaps
the hashtable could be replaced with generic Dictionary usage?

JS03: Cannot automatically fix-up use of .js (only) 'Array' type: <varname>. Suggest replacement
with a generic List.
A usage of a Unityscript array type has been encountered. This container type is not available in C# (in fact
its use tends to be discouraged in Unityscript too). CSharpatron has no automatic conversion for this since
there are a number of possible replacements.
Fix: you should replace usage of the Array type with another container class. Typically a generic List (List<T>)
makes a great replacement candidate. There’s plenty of discussion to be found on this subject, e.g. here.

JS05: Assignment to var <varname> is illegal in C# (read-only 'foreach' iteration var?)
You have script that is writing to the iteration var of a Unityscript ‘for X in Y’ style loop. This loop type is
converted to a ‘foreach’ loop in C#. It isn’t legal to write to the iteration var of a ‘foreach’ loop.
Fix: Update the loop to become an indexed type and re-convert.

JS06: Multi-assignment includes an assignee that is a value type return (not assignable in C#). This
can't be auto-fixed. Please separate out any <var>.<field> assignee.
You have a multi-assignment statement that includes a field that is a value type return, e.g. something like

 myVec = transform.position.x = 0.0;
This kind of write isn’t legal in C# and although CSharpatron has automatic fix ups for value type return
writes, it currently cannot handle this fix in the context of a multi-var assignment. See here.
Fix: separate out the write to the value type return field and re-convert.

JS07: Use of class var/property <identifier> whose name is illegal in C#.
There are many reserved keywords in C#. CSharpatron has encountered a class scoped symbol that would
be illegal. CSharpatron can automatically fix-up names for locals, but doesn’t attempt to do so for class
vars since the type may be accessed by other files plus any new name is something you’d most likely
prefer to be in control of!
Fix: rename the var (being careful to avoid C# keywords - see here), and re-convert.

JS08: A function can't 'return' a co-routine in C#; auto addition of StartCoroutine() not possible
here.
CSharpatron would usually automatically add StartCoroutine for you, but cannot do so if the called
coroutine is part of a return statement. (This is because in C# a coroutine returns IEnumerator and so
making such a fix would need to alter the prototype of the function which would have a ripple effect
across multiple files and also denote the function as a coroutine when it isn’t).
Fix: remove the ‘return’ statement and re-convert.

JS09: Identifier name <name> is discouraged since double-underscore is reserved for C# compiler
usage. (Auto rename failed)
The converter encountered a symbol whose name would be illegal in C#. In normal (local var) cases auto-
renaming would occur but isn’t currently supported in this double underscore case.
Fix: rename the variable and re-convert.

JS10: Identifier name <name> is not permitted in C# (most likely a reserved keyword). (Auto rename
failed)
The converter encountered a symbol whose name would be illegal in C#. In normal (local var) cases auto-
renaming would occur but wasn’t possible in this case.
Fix: rename the variable and re-convert.

 33

http://wiki.unity3d.com/index.php?title=Which_Kind_Of_Array_Or_Collection_Should_I_Use?
http://wiki.unity3d.com/index.php?title=Which_Kind_Of_Array_Or_Collection_Should_I_Use?
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx
http://msdn.microsoft.com/en-us/library/x53a06bb.aspx

CSharpatron User Manual - v1.2

JS11: Var declaration <name> would redefine a var in the same scope. Automatic fix-up is not
possible.
The converter encountered a symbol whose name would be illegal in C#. In normal (local var) cases auto-
renaming would occur but wasn’t possible in this case.
Fix: rename the variable and re-convert.

JS12: 'in' keyword has no equivalent in C#.
Despite not being documented anywhere I’ve been able to find, I’ve witnessed an apparently functioning
Unityscript file that employs a Javascript style ‘in’ operator (which tests for the presence of a given
property/key in a supplied array/container). On the basis of lack of documentation and C# not possessing
an equivalent keyword, CSharpatron offers no automatic fix-up of this!
Fix: replace the ‘x in container’ format with a function query appropriate to the container type, e.g.
myList.Contains(), myDict.ContainsKey() etc.

JS14: A switch expression cannot be of 'System.Type' in C#. (Convert the type to a string?)
The converter encountered a switch statement with a case condition of type ‘System.Type’ (i.e. a class-
name). This isn’t permitted in C#.
Fix: change your switch statement to test the type’s name, e.g. ‘var.GetType().Name’ and update your case
statements to string format accordingly.

JS15: Type for parameter <name> is missing. It can only be inferred as 'System.Object' which is
probably wrong.
While parsing a class based field, CSharpatron couldn’t locate any type information for the field. This may
be because the field is part of an assembly that hasn’t finished compilation.
Fix: check that the assembly containing the type is fully compiled (most likely Assembly-UnityScript or a
counter-part).

JS16: Assignment to a value type return value, this isn't legal in C#. Auto fix-up is not possible for
type field <type-field>.
A write to a value type return field was encountered (e.g. attempting to write to a vector field of a position
belonging to a transform: accessing transform.position returns the position by value rather than by
reference and so while a component read is valid, a write would be storing data to a temporary rather the
the transform’s actual position instance). In most case auto-fix up is possible, but in this case
CSharpatron’s current fix-up method is unable to achieve this. See ‘here’.
Fix: you will need to manually update the field write, e.g. from ‘myVar.field = value’ to something like ‘VarType
temp = myVar; temp.field = value; myVar = temp’.

JS17: Assignment to a value type return value, this isn't legal in C#. Auto fix-up is not possible for
type <type>
See JS16.

JS18: Class var type not explicitly defined for <varName> (will default to 'object'.) This is probably
unintentional and will lead to unexpected casts in C#.
CSharpatron found a class variable declaration with no defined type. In Unityscript this would silently
receive ‘Object’ type and could easily be being used in odd ways without you having any idea (e.g.
Unityscript will let you assign an ‘int’ value to an ‘Object’ and later compare it with another ‘int’ without any
warning).
Fix: You would do best to give the variable a deliberate type (even if that is still ‘Object’) and then re-convert.

‘Fix .CS’ Error Types
These are errors highlighting problems encountered by CSharpatron that you will need to fix before a
converted file can possibly become compilable. Fixes should be made in the .csTest or .cs version of a file.

CS00: Delegate type <type> must be fixed by user.
CSharpatron located an instance of a Unityscript Function type var. The output source will have a
placeholder delegate type written in place of the ‘Function’ type-name, e.g. ‘Func<PARAM_FIXME,
RETURN_FIXME>’. This error is telling you that you will need to manually fix up those delegate type-names
to something that suits your use of the variable.
Fix: fix the type-names in your .csTest/.cs file as suggested, or optionally supply a type-hint in your .js file and re-
convert. See more discussion on fixing up delegates in Appendix A11 or here.

General Error Types
These are errors highlighting some kind of internal problem during the conversion process. In some cases
they are ‘harmless’ by-products of Fix .JS or Fix .CS errors. In other cases they may indicate a problem with
your source file or even a bug in CSharpatron.

G00. Source file is too large to process (<size>). Limit = 1024k
CSharpatron has a file size limit of 1024k for source .js files. Anything close to this size will also likely take a
long time to convert! ...Sorry.

G51: 'in' keyword has no C# equivalent in this context.
Typically a by-product of JS12.

G56: Delegate call where type is still a 'Function' or types are unknown. Try to make the declaring
class a live C# file and then Re-Convert.
When working to replace use of Unityscript Function vars with C# delegates you will face errors in the files
that declare those vars and errors in files that use them (or which perhaps pass in function references to
those types either by writing to them directly or calling registration functions). This error will be seen in
cases of the latter type where script is attempting to make use of a delegate type.

 34

CSharpatron User Manual - v1.2

Fix: there’s probably not much that can be done here other than the error’s suggestion: don’t try to activate this
file until the file declaring the delegate has been activated first. This was the approach I took with my own
project conversion and these errors just ‘fell away’ as expected with suitable file activation ordering.

G60: System.Array type deprecated.
Most likely a by-product of JS03.

G115: Scope ended without var assignment supporting type inference for local <name>
CSharpatron finished parsing a variable scope without being able to determine the type of a variable (i.e.
it wasn’t assigned). This the error form of W29 which you will only see if you choose ‘Only Inferred Type’ for
the ‘Local var conversion’ option.
Fix: Use ‘Prefer Inferred Type’ or ensure that the variable in question has either a declared type of an assignment
to infer from.

Warnings
These are typically just information telling you of a fix-up that the converter performed or a (probably)
harmless issue encountered during conversion.

W00: Class <name> will be relocated outside of Mono class scope to maintain global name scope in
C#.
This is informing you that a class will be relocated with the .cs file in order to allow the main file class to be
contiguous within its own (now made explicit) class declaration. See here.

W01: Failed to find '#pragma strict'. Please note that CSharpatron only supports typing by *first*
assignment.
CSharpatron was primarily written to convert source files with #pragma strict declared, i.e. which
introduce new vars using the ‘var’ keyword, and which assign type to a var just once - either at point of
declaration or upon first assignment. Non #pragma strict files can certainly be converted but if your script
includes reassignments that change var-type, CSharpatron will likely try to type-cast them and won’t
update its internal understanding of your var’s type. ...This is just a warning to beware.

W03: Auto fix-up added a 'break' before switch end as required by C#.
This is letting you know that a switch statement was found with a trailing ‘case’ or ‘default’ that lacked a
‘break’ keyword in Unityscript. This would be illegal in C# so CSharpatron added one.

W06: Function <name> declares no return type but returns non-void. Reflection derived type
<type> will be used.
You have a function that declares no return type but which is returning a non-void type nevertheless!
CSharpatron can lookup the active return type using Reflection and fix up the function prototype as
required by C#.

W07: Function declared 'virtual' for C#: <func-name>
A function prototype is being converted where the function has been determined to be a virtual base.
Unityscript doesn’t need this to be explicitly stated but C# does.

W08: Function declared as 'override' for C#: <func-name>
A function prototype is being converted where the function has been determined to be an override of a
virtual base function. Unityscript doesn’t need this to be explicitly stated but C# does.

W09: C# doesn't permit drop-through from non-empty case. Auto fix-up inserted <goto case/
default>.
CSharpatron found a non-empty switch case that was dropping through to the case below it in
Unityscript. This may be deliberate and so CSharpatron fixes this up for C# by adding an explicit ‘goto’ the
case in question (otherwise you’d see an error). ...Then again, this might not be deliberate, hence this
warning!

W11: Reused 'for' loop var <varname> is not in scope for C#. A new var of the same name and type
has been automatically declared.
Unityscript’s weird scoping rules mean that unless you like thinking up a custom loop var name for every
single loop, then chances are you have plenty of functions that declare one var in their first loop instance,
and then re-use that same var in subsequent loops within the function. C#’s scoping rules don’t permit
this, and so CSharpatron adds explicit declarations for any ‘reused’ loop vars. This warning is just letting
you know that technically at least, a new var was introduced into your script.

W12: Can't infer type from 'null' assignment: <varname>. [Type will be determined by first
assignment.]
Type information for class vars can (usually) be looked up via Reflection. This isn’t the case for local vars,
and so in cases where a type isn’t declared and no assignment occurs, CSharpatron will leave the type
‘open’ until the first assignment. This warning is just to let you know - sometimes that first assignment
might not yield the type you expect (e.g. if you’re declaring a base type var that is to be assigned various
derived class types).

W13: Class var type not explicitly defined, will default to 'object'. This may be unintentional and may
lead to unexpected casts in C#.
This warning denotes that a class var has no declared type in Unityscript. This may be unintentional and
will most likely lead to ugly casts upon usage.

W14: Found class var before 'using <libs>' insertion point - output will be ugly! Ensure .js 'imports'
or '#pragmas' (e.g. 'strict') come first in your file.
In order to determine where it can neatly add new ‘using’ commands along with file class’s class
declaration CSharpatron considers the placement of any ‘import’ directives or #pragmas - things typically
top-most in a file. This warning is letting you know that we found a class var earlier in the file than either of
these things: output may well be ugly!

 35

CSharpatron User Manual - v1.2

W15: Auto fix-up for assignment to a value type return value (not legal in C#): <var-field>.
CSharpatron identified and automatically fixed up a write to a value type return (e.g. a component of a
vector belonging to a transform). See JS06 or JS16 or here for more information about this.

W19: Multi variable assignment split apart due to C# type incompatibilities.
The converter found an instance where multiple left-hand assignees are receiving a single right-hand-side
value. In this case one or more the assignees isn’t compatible with the type of its neighbor in the
assignment chain. To fix this CSharpatron has split apart the assignment to span multiple lines with RHS
values type-cast as required.

W20: Cannot determine return type of delegate ('Function') call.
An instance of a delegate call where the return type is unknown. See also CS00.

W22: Access to static field must be updated for C#. Auto fix-up replaced <original-access> with
class-name <fixup-access>.
CSharpatron identified usage of a static field or function that is accessed via a class instance. In C# this isn’t
legal syntax - the class name is the only valid prefix. CSharpatron fixed up the access accordingly.

W23: Constructor's parent call-back relocated outside of function body as required by C#.
C# requires that the callback to a parent class’s constructor is positioned between a function prototype
and the function body. CSharpatron found and fixed such an instance.

W24: Local identifier name <var-name> is illegal in C#. Fixing up as <new-var-name>. All references
will be updated to reflect name change.
CSharpatron found a local variable with a name illegal in C#. The name was automatically adjusted and
any references within the function updated accordingly.

W25: Var declaration <var-name> would redefine a var in the same scope. Fixing up as <new-var-
name>. All references will be updated to reflect name change.
Certain variable scoping fix-ups can encounter the need to rename a variable declaration to avoid collision
with a var of the same name that is still in scope. This is such an instance; references to the var have been
updated too.

W26: Converted 'char' field to 'char[]' for C#. Perhaps this is a call to a string function expecting
'char[]' that was being given a "X"[0] element in Unityscript?
This is warning that a function call which in Unityscript was passing a ‘char’, has been updated to pass a
‘char[]’ array in C#. String.Split is an example of a function that requires this fix-up.

W27: Converted Finalize() call into destructor for C#.
A call to Finalize() was converted into a C# destructor. This is to avoid C# compile error: ‘CS0249: Do not
override `object.Finalize()'. Use destructor syntax instead’. See discussion here.

W28: Relocated var decl for <var-name> to fix out-of-scope C# access.
CSharpatron located a reference to a variable that appears to be ‘in-scope’ for Unityscript but would not be
so for C#. To address this, the declaration for the variable has been moved to a position whose scope is
mutually compatible with the original declaration as well as this attempted access. You may see more than
one of these warnings for a given var. This is a consequence of CSharpatron moving the var to a broader
and broader scope in order to encompass all accesses. See Appendix A21.

W29: Scope ended without var assignment supporting type inference for local <var>. Falling back
to 'object'.
The converter has reached the end of a scope that contains a variable declaration lacking enough
information for a type to be inferred. The variable will be assumed to be of ‘object’ type. This may not
actually be correct if in Unityscript there was an ‘out of scope’ assignment to the type, but typically seems a
better option then allowing the variable to be left untyped. See also: W12.

W30: Void return in function with non-void return declared. Fix-up will return a suitable 'zero' value.
CSharpatron just reached a ‘void’ return statement within a function for which the declared return type is
non-void. A zero value of suitable type will be automatically returned instead.

W31: Class var(s) for Mono class <class-name> will be relocated to reside within C# class definition.
In a file containing classes other than just the main Mono derived file-class, CSharpatron just found a block
of vars relating to the file class which will need to be relocated in order to sit within the contiguous class
declaration that our output file needs to contain. See here.

W32: Class method <func-name> for Mono class <class-name> will be relocated to reside within C#
class definition.
Similar to W31 but in this case it is a file-class function that will need to be relocated.

W33: No assignment of 'for' loop var. Zero value will be assigned to match type.
A ‘for’ loop failed to make an assignment to a loop var. CSharpatron will initialize the var with zero.

W34: Added declaration of 'for' loop var. Type inferred as: <typeName>
A ’for’ loop failed to declare a variable and no previous variable with the same name was found. A new var
declaration will be automatically added.

 36

http://stackoverflow.com/questions/2587006/why-finalize-method-not-allowed-to-override
http://stackoverflow.com/questions/2587006/why-finalize-method-not-allowed-to-override

CSharpatron User Manual - v1.2

Appendix C - Case Study
To help give you an idea of how to (best?) use CSharpatron to convert many files - in fact an entire project -
I’ll offer a run through of how I went about converting my own project using the tool.

First let me just say that my codebase is not straightforward and perhaps not especially typical since I have
a great deal of complex, custom code and quite a bit of statically initialized data. Before writing
CSharpatron I actually considered converting the project by hand (using other available tools to help), but
after working my way through a few files, I came to the realization that I would certainly be looking at
many weeks of work!

In total the code-base comprises 267 .js files totaling 107,075 lines. I have files ranging from a handful of
lines all the way up to a few over-grown monsters of 2000+ lines. I believe I make use of pretty much every
aspect of UnityScript to some degree, plus I have a few files with code taken from the Unity wiki and the
like, so I figure (hope!) that this is a pretty good test environment for CSharpatron.

So, on a fine Summer’s morning, I began the conversion...

• First I brought up the CSharpatron Control Center (Windows/CSharpatron) and docked this in a clearly
visible spot.

• I configured Conversion Options as I needed: one Custom define, a tick for UNITY_EDITOR and
UNITY_IPHONE in the Platform defines, and also a tick for Convert all caps class var decl to ‘const’ since that
suits my code style. All other Conversion Options and Layout Options I left at their defaults since those
made sense for me.

• I decided to convert all my source files in one go. The easy way to do this was to select my top-level
‘Source’ folder since this contains all of my .js source files (CSharpatron doesn’t care what else is in there,
it picks up just the .js files). After a moment the convert button appeared: Convert (267).

• I clicked Convert ...and went off to play Battleheart Legacy for a while!
• When I checked back later, I found all the files converted and now listed - along with all conversion log

information - in CSharpatron’s Workspace View. My overall error status was:

Status Time Total time

Initial conversion of all 267 scipt files.
0 Fatal errors. 405 Errors. 2269 Warnings. 23m 23m

Of the errors, there were 275 ‘Fix .JS’ errors and 74 ‘Fix .CS’ (these all being related to my fairly extensive
use of the Function type).
Of the remaining 56 errors, 42 were knock-on effects from Function vars not being convertible, 12 were
knock -on effects of Unityscript Array vars not being convertible and the last 2 were bad assignments that
I have no idea why Unityscript wasn’t catching!

I decided to first fix up the the ‘Fix .JS’ errors, focusing on one type of error at a time.

First up, I went through all errors relating to illegal property naming. These were all class variables named
things like ‘object’, ‘string’, or ‘params’. Fixing these was a little fiddly since use of each class instance
typically spread into several other files. Along the way I also ran into the super helpful error message
‘Quack is not a generic definition’ which it turned out was a consequence of some non pragma strict Unity
Editor files (which I wasn’t converting) referencing types that I had now renamed in my project
source! ...Anyhow, with my fixes complete, I reconverted the modified file and saw a nice payoff:

Status Time Total time

Fix up illegal class variable names
0 Fatal errors. 209 Errors. 2322 Warnings. 45m 1h 08m

Next I had three files still making use of the Unityscript Array type. Bah - how had I not fixed this before!
Still, not difficult to resolve - in each case it was simple to switch the Array type for a generic List. Files
reconverted. More good progress…

Status Time Total time

Removing use of Unityscript Array type
0 Fatal errors. 168 Errors. 2383 Warnings. 30m 1h 38m

Now looking at miscellaneous problems with just a few instances of each type:

• 4 functions where I was failing to return a value in functions declaring a return type. Thanks Unityscript!
Easily fixed.

• 15 cases where I was writing to value type return values in ways that CSharpatron couldn’t fix using its
current fix-up implementation (a small number compared to the many it had fixed, but a ToDo note
added for possible future improvement (NOTE: addressed in v1.1)).

• 7 places where non void functions were failing to actually return a value.
• 2 places where I was writing to a foreach iteration var.
• 2 switch statements whose case statements were relying on Type fields. (Fixed up by changing the

switch value to ‘var.GetType().Name’ and substituting string based cases.)

Status Time Total time

Fixing various limited instance issues
0 Fatal errors. 126 Errors. 2402 Warnings. 25m 2h 03m

At this point I had fixed all of the ‘Fix .JS’ issues. I decided that rather than fix up Function type issues
‘post’ conversion, I preferred to fix them as far as possible with more edits to my .js files. I went through all

 37

CSharpatron User Manual - v1.2

cases where I was declaring Function type vars adding suitable ‘Type Hints’ before each declaration (see
Appendix A11).

...This was easily the most taxing part of my conversion work since figuring out the exact prototype in
each case was sometimes awkward. Worst of all: in several cases I had exploited the fact that one Function
var can be assigned totally different functions, both with and without return types!

Anyhow, with type-hints added, reconverting those files gave the results I was looking for:

Status Time Total time

Adding type-hints for all ‘Function’ vars
0 Fatal errors. 30 Errors. 2524 Warnings. 50m 2h 53m

Now I had eliminated all ‘Fix .JS’ and ‘Fix .CS’ errors, and was left with just 30 unqualified errors, all
relating to Function conversion issues in files not responsible for that actual Function var declaration. A
quick scan through warnings suggested nothing alarming - lots of fixes for bad local var naming, out of
scope variables, static field fix-ups, etc. ...Just CSharpatron doing its job.

You may have noticed that as I was fixing errors, my warning count actually increased. This is
mainly because errors can block full parsing, so only once they’re removed do we see all the
automatic fixes that CSharpatron wants to make along with their associated warnings.

Generally warning count shouldn’t be cause for concern - warnings are emitted mainly to offer
you a record of more significant fixes just in case you encounter problems when finally running
your project.

I decided it was time to finally start activating C# files.

• Easy files first: I had 37 files with 0 X-Refs or just 1 already fulfilled X-Ref (a utility class already written in
C#). Not anticipating any compile errors in these mostly simple files, I took them all live in one go using
multi-select, toggle status. Wait for the build. No errors. ...Next!

• I double clicked the X-Ref sort button to help highlight more zero-dependency files ready to go live.
• 6 more files now had zero dependencies. I activated them all using group select again. Compile. Sort.
• Now 3 more with no dependencies. Group-select. Activate.

Status Time Total time

Make zero dependency files live
0 Fatal errors. 30 Errors. 2524 Warnings. 10m 3h 03m

Now I had 46 live C# files representing 7% of my project. All clean compiles. Nice. But… No more zero
dependency activations.

TIP: at this point in the conversion process everything that has been done to the project is 100%
testable. I ran the game to confirm that yes, with 7% C# now active it still functioned the same!
Reassuring...

Ok, time to rely on ‘file shadowing’ to make it possible to activate more C# files...

• First step of working with shadowed files: I used the ReBuild Stubs File command to generate the file
CSharpatronTemp.cs. I also ticked the Conversion Option Build stubs file during conversion in case I
needed to reconvert anything.

I’m not sure there’s a best ordering strategy for making files live via shadowing… For me, what seemed
logical was to try and get simpler files activated first (i.e. ones with lower X-Ref counts, lower line counts). .
After a while working through files like this, I switched to a different strategy: switch sort-mode to ‘File-
path’ and focus on groups of related files.

My process for essentially the remainder of my project conversion was:

• Activate a group of 3 or 4 files. Wait for compile.
• Roughly 1 in 10 files would throw up C# errors. These would either be:

a) Problems relating to attempted use of delegate types for which declaring files hadn’t yet been
made live. (As I mentioned before: the stubs file ‘cheats’ when it comes to delegates and just
pretends that they are of ‘object’ type. That obviously doesn’t fly once you have a file trying to
make concrete use of a delegate var or function with delegate parameters)

b) Some bizarre, eye-opening error related to Unityscript’s loose (virtually non existent?!) type
checking. See Problems Revealed.

c) Something that CSharpatron had’t been able to fully fix.
• When encountering type a) issues, I would make a judgment call: if there were a handful or less

references to fix in a file then I would comment out the offending lines, making absolutely certain to add
a Dependency Hack tag. Where more fixes would have been necessary, I cancelled activation of the file
with the intent of making it live later, once I had activated the class responsible for declaring the
delegate in question.

• Type b) errors actually proved to be very simple to fix in every case. I fixed each of these as they came up
and moved on.

• Type c) issues actually proved to be extremely rare. See Manual Fixes Required.

I had a lot of files to work through, and in most cases their external file dependencies were huge (like 190+
files out of 267!), so for me there was little chance of actually running the game with any of the shadowed

 38

CSharpatron User Manual - v1.2

files made fully active until the last file was activated. (Although just to be clear, the game was still
runnable at all times just still operating with the .js versions of those shadowed .cs files.)

With the last file finally activated I had three last things to do:

• I used the DeShadow command to make all my ‘shadowed’ files truly active. There was a lot of stuff
happening at this point: 221 files having their .js versions made inactive (and backed up), having their .cs
versions edited to remove them from the ‘shadow’ namespace. Then one final long build as the compiler
churned through all the newly edited files.

• I removed Dependency Hacks - basically just re-instating commented out lines. Of course I used the
Dependency Hack tag as a search string to find all occurrences. (With related types now compiled to C#
all of these edited files now compiled fine too).

• And finally: I used the Finalize command to copy C# files back from their temporary location within
‘Plugins’ and back to my source folder. This also cleaned up work files (including the ‘stubs’ file), but
didn’t remove the actual CSharpatron project or backed up Unityscript files.

The final work summary:

Status Time Total time

Make high dependency files active, fix C# errors
0 Fatal errors. 30 Errors. 2524 Warnings. 1h 25 4h 28m

As I suspected none of those 30 errors had actually impeded my progress, all just fell away.

Throughout the whole process of getting the C# files compiling I encountered 30 files that had C#
compiler errors. 8 of these files had Function dependency issues that I used Dependency Hacks to
circumvent. The other 22 exhibited errors you can see documented below. Mostly they were ugly
Unityscript source elements - or actual hidden bugs - revealing themselves (see Problems Revealed). Just a
handful of issues were things that CSharpatron hadn’t been able to resolve (see Manual Fixes Required).

The Moment of Truth
With conversion complete, no dependency hacks and no C# compile errors, my project was finally ready to
be run in its new, C# form. With great anticipation I hit the Play button and…

EXCEPTION!

Two in fact.

I’m guessing that switching files to C# must change startup order somehow? ...For whatever reason I had
two system classes that were falling over in initial update passes due to ‘null’ fields. I added ‘!= null’ tests in
each case and ran again. This time...

SUCCESS!

...And then one more run-time issue: an exception within my save-game class. It turns out that if you write
an ‘int’ to a hash-table then accidentally read it back as a ‘float’ Unityscript is perfectly happy. C# not so
much. Anyhow...

My project is now running in C# with no apparent side effects, in fact - less bugs than before! Woohoo.

UPDATE for v1.1:
 After optimization work, CSharpatron’s conversion times have dropped significantly.
For my full project, the initial conversion now takes just under 12 minutes rather than 23.

Build Time Improvement
The conversion process made it fairly clear that most files in my project have huge dependency lists. This
isn’t really a shock since unlike languages like C or C++ where header files must be included in order to
utilize external types (and that makes you think about dependency overhead), the .Net languages really
encourage you to go buck-wild and use whatever types you need. The upshot of this is that making a
simple change in a typical file actually causes the majority of the project to be rebuilt.

Having done some timing tests based one such file I can report:

Typical build time for Unityscript: 56s
Typical build time for C#: 18s

A nice visible reward for the conversion effort!

 39

CSharpatron User Manual - v1.2

Problems Revealed
I don’t believe that I am generally a ‘sloppy’ programmer, but these were all problems unearthed by my
project conversion, things that Unityscript had let me ‘get away with’ where a stricter language would have
caught the error on first compile:

• An instance where the Unityscript compiler had let me type ‘if (keys[i] === key)’. (CSharpatron error)
• An instance where a function had a for loop: for (i = 0; i < xpt.values.length; i++) where the loop var ‘i’

hadn’t been declared at any prior point in the function (and no class var ‘i’ either). ...And this was a
#pragma strict file! (CSharpatron error)

• Seven instances where non void functions were failing to return a value. (CSharpatron errors)
• Many instances of functions where a return type had inadvertently been omitted but which were

returning non void types. (CSharpatron auto-fix warning)
• One switch statement with a case that was dropping through unintentionally. (CSharpatron auto-fix

warning)
• An instance where Unityscript didn’t see any problem with ‘System.Int32.Convert(stringVar * float)’ that

should have been ‘System.Int32.Convert(stringVar) * float’. (C# compile error)
• Two cases where I had local vars with the same name as class vars where both symbols were being

referenced on the same line, e.g. ‘color = Mathf.Lerp(color, pulse, frac)’. (C# compile error)
• An instance where Unityscript was happily letting me compare a float and a Vector3. (C# compile error)
• A switch statement where a case value was accidentally duplicated. (C# compile error)
• Four errors due to the fact that Unityscript doesn’t care if a virtual overload whose base returns non-void

has no return statement itself. (C# compile error)
• Interestingly, if a base method has no return but a derived version attempts to return something,

that gives an error!
• An instance where a function returning a bool had a return statement within an if statement but none

outside of it. (C# compile error)
• Several instances where I was accidentally calling parent constructors passing them uninitialized class

vars instead of the passed-on constructor parameters I intended. (C# compile error)
• An instance where I was using ‘as TypeX’ to cast a function’s return type but had inadvertently called the

wrong method and Unityscript was in fact assigning a completely unrelated type - that C# would have
considered non-convertible - without any warning! (C# compile error)

• An instance where I had somehow managed to add a ‘new’ operator in front of a static ‘typeVar.func()’
call that Unityscript had no problem with. (C# compile error)

• Even with #pragma strict present, Unityscript doesn’t care if you don’t declare the type of a function
parameter (I had about 20 accidental cases of this). (C# compile error)

• Such parameters are just left as type ‘object’ so whether you ever see the problem is completely
down to what the function might do with those inputs.

• An instance where I accidentally wrote ‘nextUpdateState = X’ when I should have put ‘nextUpdateStage
= X’. (Again, this was a #pragma strict file - shouldn’t that catch this sort of thing?). (C# compile error)

• In Unityscript accessing a hashtable element that isn't of the expected type 'just works', in C# you get a
type-cast exception. (C# run-time error)

During development of CSharpatron I also came across:

• A place where an out of scope variable was always being used uninitialized. (CSharpatron error)
• Six places where out of scope vars could potentially be used with uninitialized values. Three of these

directly explained erratic hard to repro bugs that existed in my game.
• One place where a copy/paste had led to an out of scope var from earlier in a function being used

instead of a intended, new loop var.

NOTE: These kind of problem are now fixed automatically since CSharpatron will ‘re-scope’ and initialize
variables such that all accesses are within the same scope.

Manual Fixes Required
These were the few fixes I had to make which weren’t in direct response to CSharpatron errors but which
instead arose from C# compilation:

• I had a foreach loop iterating a Hashtable. CSharpatron had inferred ‘object’ as an appropriate type for
the iteration var but that didn’t work with how the iteration var was being used: I needed to update the
type manually.

• I had to remove a try/catch block from a coroutine function (this was apparently causing an internal
compiler error in C# - weird).

• C# doesn’t allow non constants as switch case values. I had a couple of switches that I needed to turn
into if/else ladders.

• I had a class that employed a function dictionary of .js type ‘Dictionary.<string, Function>. I had to
rework that a little since C# delegates are strictly typed and this dictionary was being assigned functions
with two different prototypes.

• Beyond the general need to fix-up (or pre-hint) all Function to delegate conversions, I had one case in
particular that was a little more complicated due to the number of parameters… Although it wouldn’t
have been a limitation in a more modern version of .Net, Mono 2.0’s older .Net implementation has a
limit of five types for Func and four for Action types. A solution for this is to define a custom delegate
type, e.g.

// Would like to have hinted like this:

// !CSTYPE! captureFunc: Action<Camera,Plane[],PropLocator[],PropMeshInfo,PropLocator.Flags>;

// But five params is too many. So instead we declare a new delegate type...

public delegate void PropCaptureDelegate(Camera camera, Plane[] frustumPlanes, PropLocator[]
candidates, PropMeshInfo pmi, PropLocator.Flags captureFlag);

 public PropCaptureDelegate captureFunc;

 40

CSharpatron User Manual - v1.2

Conclusions
Conversion of my project proved to be straightforward, and was (I think) very fast for such a complicated
code-base.

Out of my 267 files, after fixing ‘Fix .JS’ issues and adding Type Hints to address Function conversion, 237
of those files (89%) compiled perfectly without a single manual edit to the CSharpatron’s .cs output. None
of the remaining files required more than a few quick fix-ups.

I do wish I could have done more to automate conversion of Functions-to-delegates - these were the
cause of the vast majority of manual fix-up work that I had to do. Unfortunately I just can’t see any viable
path that’s any better than ‘type-hinting’… The main problem is simply that the Function type is so flexible
and that some use-cases simply demand a re-think in order to transition into an environment supporting
only statically-defined types.

I was especially relieved to see that not a single mapped object lost data during the conversion process,
and that barring those two (not-obviously-conversion-related fixes), the game still ran at the end of it!

LIke I said earlier, I believe my project definitely sits at the ‘complicated’ end of the conversion spectrum.
For comparison I also did a test conversion of Unity’s ‘Penelope’ example project and that converted with
zero errors and was running in C# in less than 5 minutes! I suspect many people would find their
experience closer to that one.

Anyhow, thanks for reading - I hope CSharpatron is able to save you as much time as it would have saved
me (had I not had to write it first!).

�
A couple of take away thoughts:

• This conversion process revealed quite a high number of latent bugs in my game. I really have more
confidence in the quality of my C# codebase than I had in the Unityscript I started with - not something I
would have expected.

• Writing complex scripts in a loosely typed language is a very bad idea. I won’t be sorry to leave
Unityscript behind me!

Appendix D - Extras
Reflection Tools
To help with development of CSharpatron I implemented some simple tools that can dump out Reflection
derived type information to the Unity log. I found them useful so figured others else might find them
interesting or useful too…

To use these tools, open up the control center’s ‘Extras’ callout. You will see:

• Show reflected types. Use this tool to display the names of types present within available assemblies. If
you click ‘Show’ leaving the tex-box empty then you’ll get a list of all types, grouped by assembly. ...It’s
interesting to see the insane number of classes we have access to!
Anything you type in the tex-box is treated as a filter tag, so if you type ‘Random’ then click ‘Show’ you’ll
see all types that include the text ‘Random’ within their name.

• Show members of type. If you know the name of a type that’s of interest, you can look up all members
of that type using this option. What you type is treated as a filter tag so if you lookup ‘String’ you’ll see
the members of all types containing ‘String’ in their name (48 classes for me). A more specific tag like
‘System.String’ shows fewer types (4). If you want only an exact type the supply a full type name and hold
down Alt as you click the ‘Show’ button.
NOTE: output for a given class includes all inherited fields. (It would be nice to actually list the inherited types
and interfaces but that’s not quite as simple as it sounds and I haven’t had a need that justifies this so far!)

• Show members with name. If you remember the name of a method or field but can’t remember which
type contains it, you can use this one. The text you provide is a filter tag unless you hold down Alt as you
click the ‘Show’ button, for example if I search for ‘Substring’ I see about 25 results spread across 14
types. Holding down Alt, this becomes 9 results across 8 types.
NOTE: this tool takes a while to return a result; it has to churn through a lot of type information!

• Extension methods. Click the ‘Show‘ button to see log output of every public extension method, sorted
by ‘extended class’ (new in v1.1).

Each of these tools just writes results as a single Log string so copy/pasting into a file is very
straightforward.

 41

CSharpatron User Manual - v1.2

Change Log
v1.2
- Added support for conversion of Unityscript ‘Properties’.
- Added retry mechanism to all file operations to avoid the potential for ‘sharing violation’ exceptions e.g. if VS Intellisense

parsing is occurring during converter operation.
- Added support for ‘same line’ style properties. This is valid for certain types only: HideInInspector,

System.NonSerializedAttribute, System.NonSerialized and SerializeField.
- Added a warning message any time that the user’s project isn’t in a compiling state.

v1.12
- Fix for converter freeze that could occur with a certain source formatting style.

v1.1
- Fix for error case when reading workspace file when running under Windows (causing 'Int32.Parse' crash cycle).
- Improved support for multi-var arrays declared in Unityscript (e.g. int[,])
- Support for mixed format multi-dimensional arrays declared in a C# assembly (e.g. int[,][])
- Fix for a freeze bug that could occur if source contained an abbreviated float constant of the form ‘1f’.
- Reworked handling for auto fix-up of assignment to value type return. New method works in all cases barring multi var
assignment.
- Prevented an unhelpful type-cast to ‘IEnumerable' that could be added in some circumstances.
- Fixed a case where a var declared as a Unityscript Array could fail to yield an error.
- Fixed possible confusing error message pending assignment of a Unityscript Array to an otherwise untyped var.
- Fixed potential parsing bug when processing initialized arrays (could have caused bad type-cast bracketing).
- Added a debug ‘line-step’ feature to help one user to track down a 'lock-up’ bug.
- Added support for Javascript ‘Number’ type (converts to C# 'double’)
- UnityEngine.Object.Instantiate return type now implicitly set to match first param (to match the similar magical upcast
that Unityscript can apparently perform without the need to cast!)
- @CustomEditor is now respected and used to infer the type of the editor class var ‘target’. This works wonders for
conversion error counts in editor related files.
- Extension methods (from C# assemblies) are now parsed correctly when used in Unityscript.
- Added a ‘DumpExtensionMethods’ debug tool (under Extras).
- Fixed bogus ‘read-only’ error when script was writing to ‘this.member’.
- Fixed possibility for negative numeric constants to be misinterpreted.
- Fixed bug that could cause broken stubs file generation.
- Improved detection of implicitly convertible types in binary ops to fix some spurious casts.
- ‘Rebuild stubs file’ is now blocked if there are outstanding fatal errors (to avoid generation of an incomplete file).
- Reworked intParse and floatParse to just insert type-casts as appropriate.
- Improved wording for a couple of common warnings.
- Improved handling for typeof() operator. If supplied a non-class name, CSharpatron now auto-converts to var.GetType()
- Added new ‘About’ callout in Control Center panel to make version and contact details a little more accessible.
- Added support for anonymous methods.
- Major optimization to conversion times, now approximately twice as fast as v1.03.
- Fixed parsing problem in ‘for(var x:type in y)’ style loops where ‘type’ included template brackets.
- Fixed fatal error parsing nested ‘if' statements of the form ‘if (x) if (y) {}’.
- Added ability to ‘DestroyWorkspace’ after ‘Finalize’.

Many thanks to users who logged bug reports and supplied code snippets that helped me to identify problems. Special
thanks to Tanuki Digital for granting me full source access to an entire project - great for prompting some of the new
conversion improvements.

v1.03
- Fixed a problem where initializing database could encounter file exceptions when attempting to load all assemblies for

parsing.

v1.02
- First published version

 42

